Course Number and Title: *MATH111 – Discrete Mathematics* **Number of Credits: 3 Prerequisites:** *None* **Co-Requisites:** *None.*

Course Description: The course examines topics including: propositional logic, Boolean algebra; introduction to set algebra, infinite sets; relations and functions; methods of proof; introduction to number theory; introduction to graph theory, trees; combinatorics; applications to computer science. Students should be able to apply practical numerical methods to solve problems which arise in computational sciences. Students are required to demonstrate a rudimentary foundation in mathematical modeling through solving problems arising in computational science through analytical and numerical methods. Six hours of instructor-led class time per week including discussions and problem sets.

Required Materials: 1. Mathematics: A Discrete Introduction 3rd Edition, 2012 by Edward A.

Scheinerman.

2. Discrete Mathematics for Computer Science, by G. Haggard et al.

Schedule & Topics

Week	Торіс	Reading	Non-Reading Home Tasks
1	Introduction to the course. Foundations.		
	The language of mathematics, definition, theorem,		
	if-then, iff Proof Numbers, basic number theory		
2	Sets		
	Collections. Set operations. Infinity, countable and		
	uncountable sets		
3	Relations		
	Equivalence, partial order		
	Closure		
	Relation algebra		
4	Functions as relations		
	Bijective, injective and surjective functions.		
	Inverse function.		
	Set cardinality.		
5	Combinatorics		
	Recurrence relations		
6	Pigeonhole principle		
	Revision & catch-up		
7	Discrete Probability		

8	Propositional logic	
9	Boolean algebra	
	Boolean functions	
	Completeness of $\{\neg, \land, \lor\}$	
10	Graphs	
11	Trees	
12	Rooted trees Graphs	
13	Planar Graphs, Euler's Formula	
14	Graph algorithms	
15	Revision & catch-up	

Learning Objectives & Outcomes:

The following chart shows alignment between course-specific learning objectives and program learning outcomes and goals as identified in Program Curriculum Map. [Note: in determining course-specific objectives, it is important to review the curriculum map to relate the appropriate skill level if specified (e.g. beginner, intermediate, and advanced).

General Education / University-wide Program Goals:

Program Goals <u>Common to all programs</u>	Student learning outcomes Common to all programs	Course Learning Outcomes <u>To be filled in by course instructor</u> based on assignments/assessment
Equip students with know- ledge and advanced skills in mathematical reasoning, problem solving, modeling and scientific computation	 1.1) Use concepts and methods of mathematical disciplines relevant to mathematical modeling. (Beginner Level)] 1.2) Have in-depth knowledge of analytical and numerical methods and be able to apply it to solving problems arising in computational sciences. (Beginner Level)] 	Read and write mathematical proofs, and appreciate beauty in mathematical proofs. Frame mathematical axioms and theorems in the language of set theory and symbolic logic. Read, write and analyze mathematical algorithms. Understand generalizations of mathematical concepts that they have already encountered in special cases, such as equality, inequality, ordering, equivalence, divisibility, infinitude, etc. Apply mathematical reasoning in domains with which they were probably previously unfamiliar, such as planar graphs.