A MERICAN
U N I V ERSITY
O F
A R M E N I A
College of Science and Engineering
Summer Semester, 2018
Instructor Victor K. Ohanyan

IESM 106 - Probability and Statistics,
Waived Examination
20 August, 11:30-13:20

Student Name

Problem 1 (20\%)

Problem 2 (20\%)
Problem 3 (15\%)
Problem 4 (15\%)

Problem 5 (10\%)
Problem 6 (10%)
Problem 7 (5\%) \qquad

Problem 8 (5\%)
Total

Please write clearly and state any assumptions you make. You can use only ordinary calculators for computation. The use of mobile phones or tablets is strongly prohibited. Please turn off your cell phones.

Student Name

IESM106 - Probability and Statistics, Summer Semester, 2018

Waived Examination

PROBLEM 1. An unbiased coin is tossed 8 times.
a. Find the probability that there will be at least one "tails".
b. What is the probability that there will be more "tails" than "heads"?
c. Calculate the probability that a random series either begins with 4 "heads" or ends with 4 "tails"?

Student Name
IESM106 - Probability and Statistics, Summer Semester, 2018

Waived Examination

PROBLEM 2. Let η be an absolutely continuous random variable with density function

$$
f_{\eta}(x)= \begin{cases}\frac{1}{2} & \text { if } 0<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

Let $U=-\eta^{2}$. Find the probability density function of U.

Student Name
IESM106 - Probability and Statistics, Summer Semester, 2018
Waived Examination
PROBLEM 3. J\&M have their child in daycare twice a week. Being busy people they are often a few minutes late to pick her up. The daycare has a strict policy that parents need to be on time. They enforce this by charging $\$ 1$ per minute for tardiness. Suppose that each day the amount of time in minutes that they are late follows an exponential distribution with mean 6 . Their child will be in daycare for 100 days this year. Estimate the probability that they will pay more than $\$ 630$ in late fees?

Student Name
IESM106 - Probability and Statistics, Summer Semester, 2018
Waived Examination
PROBLEM 4. Let the continuous random variables η_{1} and η_{2} have joint density function

$$
f(x, y)= \begin{cases}\frac{1}{x} & \text { if } 0<y<x<1, \\ 0 & \text { otherwise } .\end{cases}
$$

Compute $\operatorname{Cov}\left(\eta_{1}, \eta_{2}\right)$.

Student Name
IESM106 - Probability and Statistics, Summer Semester, 2018

Waived Examination

PROBLEM 5. Recall the relation between degrees Fahrenheit and degrees Celsius

$$
\text { degrees Celsius }=\frac{5}{9} \times \text { degrees Fahrenheit }-\frac{160}{9} .
$$

Let X and Y be the daily high temperature in degrees Fahrenheit for the summer in Los Angeles and San Diego. Let η_{1} and η_{2} be the same temperatures in degrees Celsius. Suppose that $\operatorname{Cov}(X, Y)=5$ and $\rho(X, Y)=0.9$. $\operatorname{Compute} \operatorname{Cov}\left(\eta_{1}, \eta_{2}\right)$ and $\rho\left(\eta_{1}, \eta_{2}\right)\left(\rho\left(\eta_{1}, \eta_{2}\right)\right.$ $=$ correlation).

Student Name
IESM106 - Probability and Statistics, Summer Semester, 2018

Waived Examination

PROBLEM 6. Let A and B be events with probabilities $P(A)=5 / 6$ and $P(B)=1 / 4$. What is the maximum and minimum values of $P(A \cap B)$. Find corresponding bounds for $P(A \cup B)$.

Student Name
IESM106 - Probability and Statistics, Summer Semester, 2018

Waived Examination

PROBLEM 7. We know the expectation of random variable η :

$$
E \eta=\frac{1}{\theta} .
$$

Find the estimator for unknown parameter $\theta>0$ by the method of moments, if we have the following sample of size 5:

$$
X_{1}=2, X_{2}=2.5, X_{3}=3.5, X_{4}=1.5 \text { and } X_{5}=0.5 .
$$

Student Name
IESM106 - Probability and Statistics, Summer Semester, 2018
Waived Examination
PROBLEM 8. The Pareto distribution with parameter α has probability density function

$$
f(x)=\left\{\begin{array}{ll}
\frac{\alpha}{x^{\alpha}} & x \in[1,8] \\
0 & \text { otherwise. }
\end{array} .\right.
$$

Suppose the data 5, 2, 3 was drawn independently from such a distribution. Find the maximum likelihood estimate of α.

