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ABSTRACT

There are various optimization techniques in the realm of 3D, including point cloud-based ap-
proaches that use mesh, texture, and voxels which optimize how you store, and how do calculate
in 3D. These techniques employ methods such as feed-forward networks, 3D convolutions, graph
neural networks, transformers, and sparse tensors. However, the field of 3D is one of the most com-
putationally expensive fields, and these methods have yet to achieve their full potential due to their
large capacity, complexity, and computation limits. This paper proposes the application of knowl-
edge distillation techniques, especially for sparse tensors in 3D deep learning, to reduce model sizes
while maintaining performance. We analyze and purpose different loss functions, including standard
methods and combinations of various losses, to simulate the performance of state-of-the-art mod-
els of different Sparse Convolutional NNs. Our experiments are done on the standard ScanNet V2
dataset, and we achieved around 2.6% mIoU difference with a 4 times smaller model and around 8%
with a 16 times smaller model on the latest state-of-the-art spacio-temporal convents based models.

Our source code is available at: https://github.com/madanela/smaller3d

1 Introduction

In recent years, 3D semantic segmentation has gained significant attention in computer vision due to its broad
application range in various fields such as robotics, autonomous driving, medical imaging, and many more. 3D
semantic segmentation aims to extract meaningful information from 3D point clouds, by label assignments of every
point in the point cloud. The scene understanding of 3D with deep learning became popular by PointNet (Qi, C. R.,
Su, H., Mo, K., & Guibas, L. J. (2017)) [1]. After that, in 2019 4d spatio-temporal convnets: MinkowskiNets(Choy,
C., Gwak, J., & Savarese, S. (2019)) [2] and SparseConvNets (Graham, B., Engelcke, M., & Van Der Maaten, L.
(2018))[3] were purposed which hit state-of-the-art results on release by overpassing other methods with huge margin,
by suggesting to use Sparse Convolutional NNs for this task, which are working for any D dimensional tasks. This
approach was quite useful because convolutional NNs are faster than other approaches like transformers, recurrent
NNs, 3D convolutions and etc. These new Sparse Convolutional NNs enable to make the learning process much faster
and more efficient. Studies of Sparse Neural Networks show, that in 3D sparsity of data is very vivid, and with a voxel
size of 20cm around 78% and with a voxel size of 2.5cm around 98% of data is empty. It becomes much clear, that
whenever we are using well-known 3D convolutions or any other methods that do not consider Sparsity, a lot of weights
of neural networks are just learning empty space, and they discard the neural networks to learn from informative data.
After that, a new technique was added on top of MinkowskiEngine, called Mix3D (Nekrasov, A., Schult, J., Litany,
O., Leibe, B., & Engelmann, F. (2021, December))[4] which purposed using augmentation technique to mix different
indoor scenes together. It proved to be much better, as this technique was working well against overfitting, and started
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to help models to better understand the general context and local geometry and achieved state-of-the-art performance
on the Scannet V2 dataset.

However, those models are still quite big and require a lot of resources (GPU, TPU) to run or test with current reg-
ular machines. In this paper, we propose the Knowledge Distillation method, which enables us to get almost the same
results as state-of-the-art methods, while using much less computation and resources, and also keeping performance.
We are a purposing mix of different Knowledge Distillation Loss Functions, which include using different feature map
losses (See 1) and also Logit loss with temperature like [5]. Those Losses are explained in 2. In this paper, we aim to
replicate the Mix3D[4] results with a voxel size of 5cm. Then by keeping the architecture and reducing the number
of neurons, use knowledge distillation to transfer teacher network info to smaller student networks. Our studies show
a minimum loss in % of mIoU(around 2%). Through all studies, the evaluations are done on the ScanNet V2 dataset,
which is concentrated on indoor 3D scans. We compare our results with different approaches, and also our own dif-
ferent student networks, learned by numerous loss functions. Our studies show that generalizing some tasks is done
much better with a smaller model on some specific tasks, which are shown on Experiences(See 5). We have tested
our studies with 2 different networks with the structure of Res16UNet34C, by using half, or a quarter of neurons, to
symmetrically reduce the sizes. We also show that this approach helps to keep the architecture and transfer original
knowledge from different layers of the network, by giving us control during distillation. Experiments also show that
using additional loss along with Knowledge Distillation standard techniques relatively speeds up learning and makes
the process stable and helps student models to directly move towards teacher models and use a much higher learning
rate.

Our contributions are summarized as:

• Apply different Knowledge Distillation methods to 3D Semantic Segmentation tasks. As a result, we achieved
making relative mean intersection over union (mIoU) score, compared with the teacher network(by minimiz-
ing the network size 4 and 16 times). With this, we show that Knowledge Distillation makes training and
inference complexity lower and faster while maintaining performance.

• Purpose a new architecture for Knowledge Distillation models for student-teacher distillation training. As
a result, the student Network is able to learn from the teacher network, not only by the last layer but also
through feature maps of intermediate layers.

• Purpose a new loss function, that combines Encoder, Decoder, and classic Knowledge Distillation losses.
It gives much control over the training process, and hence with this new loss function, we achieve training
process stability.

We have included all in our code and models, which were developed on top of Mix3D augmentation techniques,
at https://github.com/madanela/smaller3d

2 Background

The background of methods in Knowledge Distillation is very diverse, depending on the modality and scalability
of models that are processed. To understand the logic of Knowledge Distillation in the 3D Semantic Segmentation
task, we started by using multiple classic methods of Knowledge Distillation with a mix of different losses.

The trivial idea that can be used to train a smaller model for the same task as the teacher model, is just training
it with the same pipeline, that has been done with the teacher model. So in this case, the student model does "not
see", the output of the teacher model. With this approach, the labels are static, while the output of the teacher model
is dynamic(See [5]). Firstly, tests have been done with classic Knowledge Distillation methods, which first were
purposed by Bucilua, C., Caruana, R., & Niculescu-Mizil, A. (2006, August)[6] and then developed by Hinton, G.,
Vinyals, O., & Dean, J. (2015)[5]. Hinton, G., Vinyals, O., & Dean, J. (2015), suggest, that for Knowledge distillation,
it is enough to use penalty only on the last layer output. It was also suggested to use temperature for "soft labels",
which helps the learning process to be faster. Here on the bottom, it is represented their suggested loss, which works
quite well, to imitate the teacher model performance. The gradient of the distilled model(student) is zi, the temperature
is T, and vi is teacher model output [5].
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Figure 1: Smaller3D is a knowledge distillation method, that makes 3D
Semantic Segmentation models smaller via transferring knowledge from the
Teacher model to the Student model. Loss 1, Loss 2, and Loss 3 are shown
as different outputs of the network, which we used to calculate the cost func-
tion. These are included in our studies to test the performance of knowledge
distillation. Loss 1 is a loss between the outputs of latent spaces(Network last
layer). Loss 2 is between the outputs of the U-Net similar structure Decoder
feature map, and Loss 3 is between the outputs of the U-Net similar structure
Encoder feature map. Note that the Convolutions shown in the visualization
are 3D sparse tensors, they are cube similar for easy visualizations only.
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In that same paper, it was also suggested to use the α parameter between 2 different losses (student-ground truth
and student-teacher) which balances loss, and by different problems, can be changed for different problems. Let in
our further studies, denote this loss as Loss1 as LBAN in 2.

LBAN = LCE(y, σ(s)) + LKL(σ(t), σ(s))

Furthermore, we decided to add additional losses, to boost the performance of the model. In KENet (Liu, H., Zhang,
C., Xu, C., & Li, G. (2020))[7], they suggest to use of a basic mapping function which maps from a three-dimensional
attention activation layer to 2d spatial activation map. It helps to transform both student and teacher network layerwise
transformation to the same space, and then use L2 loss(MSE) between pairwise subtraction of same layer matrixes.

In our case, we decided to use another approach to match different space matrixes. To do so, we suggest using
Upsampling Spatio Temporal convolutional layer on top of our selected feature map, to bring it to the same space as
the teacher feature map. The formula mentioned 2, it is shown the FUpSample that is used to transform sout(feature
map output of student network) to the same space as tout(feature map output of teacher model).

LF M = LMSE(tout, FUpSample(σ(sout)))

This Upsampling layer over the feature map is shown in Figure 1 with Loss 2 and Loss 3 which are done over
feature maps of the Decoder and Encoder last layers respectively. This method has a function of Dimensionality
reduction, as with student-teacher respective layers, we force smaller dimensional feature maps of the student layer, to
represent the same information as the teacher’s one.
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3 Related Work

In this Section, we will first introduce KD methods, or approaches, to teach smaller student models from teacher
cumbersome models. Then, the related work will continue with current approaches of 3D Semantic Segmentation
(describing which models exist, and which ones we tested to make smaller) and also the ones, that have been tested
Knowledge Distillation in 3D. See 2. Note, that Knowledge Distillation in 3D semantic Segmentation is not devel-
oped yet, so we decided to analyze 2 different sphere information to further mix different methods from Knowledge
Distillation and Semantic Segmentation in 3D. There are also some works done on Knowledge Distillation in 3D, but
those researchers were not done on Semantic Segmentation tasks.

3.1 Knowledge Distillation

Knowledge Distillation(KD) is a model compression technique that started its main journey by Hinton, Vinyals,
and Dean (2015)[5] that involves transferring knowledge from a larger, cumbersome model (teacher) to a smaller,
faster model (student). The main idea is to use the teacher’s output probabilities (softmax) as "soft labels", which
makes the process of class learning much more efficient, by using Temperature in loss calculations. It is shown in
formula 2. The same paper also suggested using hyperparameter α to balance the loss between student-teacher and
student-ground truth losses, to find a better loss for distillation. See formula on 2.

Later Furlanello, T., Lipton, Z., Tschannen, M., Itti, L. &amp; Anandkumar, A.. (2018) suggested Born Again
Neural Networks[8] which shows, that without softening labels, it is possible to achieve same results with similar
architecture. They use multiple student models, which we will discuss further, that are trying to iteratively teach
student models. With each step, the student model becomes a new teacher for further distillation.

There are also early approaches, that suggested mimicking the teacher’s output distribution with regularization,
which is adding hint and guide layers on teacher and student models that help against overfitting. (Romero, A., Ballas,
N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2014))[9]. It suggests classic regression layers, as additional
layers, and also custom MSE loss between those layers to help mimic. Also, there are approaches, that use an idea of
an additional layer adding(similar to our approach), but on a 2D Semantic Segmentation task. For example, He, T.,
Shen, C., Tian, Z., Gong, D., Sun, C., & Yan, Y. (2019)[10] suggests, using the bilinear function for upsampling, to
make teacher and student networks on the same space. By our estimations, it is not relevant to our task, as they learn
affinity module, which is not clear to implement with sparse tensors. Another point is, that in their tested models, the
architecture is not similar to ours, and it is not relevant to the Knowledge Distillation on 3D Semantic Segmentation
task. Some other examples are shown by (Shu, C., Liu, Y., Gao, J., Xu, L., & Shen, C. (2020).)[11], (Wang, Y., Zhou,
W., Jiang, T., Bai, X., & Xu, Y. (2020))[12].

Some new methods are trying to train a smaller model by using multiple teacher models. It helps inter-data-
exchange over the training process between small student models, and also generalization by combining multiple
methods. Also, there are approaches when multiple teacher models train smaller student models, and student model
loss is decided by cross-function with weights to distill knowledge from multiple teacher models, and approximate
information in students (Wang, L., & Yoon, K. J. (2021).)[13]. A similar approach is suggested by different papers,
which in general is designed to find an optimal number of teacher networks, and what kind of loss is needed to use,
in order to make the student model less biased, and better in general. Such examples are (You, S., Xu, C., Xu, C.,
& Tao, D. (2017, August))[14], (Tarvainen, A., & Valpola, H. (2017))[15], (Liu, I. J., Peng, J., & Schwing, A. G.
(2019))[16], (Zhang, Y., Xiang, T., Hospedales, T. M., & Lu, H. (2018))[17], (Mirzadeh, S. I., Farajtabar, M., Li, A.,
Levine, N., Matsukawa, A., & Ghasemzadeh, H. (2020))[18], (Chen, D., Mei, J. P., Wang, C., Feng, Y., & Chen, C.
(2020, April))[19], (Park, S., & Kwak, N. (2019))[20]. In KENet (Liu, H., Zhang, C., Xu, C., & Li, G. (2020))[7]
there is a similar idea, that we used, which is loss over feature map. However, their loss function is based on attention
map distances between students and teachers in some feature map layers. However, as their Degree of Freedom is
different, the distance is rather an approximation, but regular L1 or L2 losses.

These are also special frameworks, designed for Knowledge Distillation for neural network architectures, which
helps to speed up the process of architectural design, data loading, and parallel training of student teachers (maybe
teachers), and also to make the process faster for research. It is mainly using config files, to call build-in func-
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tions(mainly yaml config files). It enables to easy use of state-of-the-art Knowledge Distillation methods, for ana-
lyzing different models. (Matsubara, Y. (2021, May))[21]. In our case, this is quite difficult, because we are using
Minkowski Engine (Choy, C., Gwak, J., & Savarese, S. (2019).)[2], which itself is a built-in C++ library, and is not
easy to integrate to any torch standard frameworks.

3.2 Knowledge Distillation in 3D

Knowledge Distillation in 3D is not developed as a holistic approach, as there are different evaluation benchmarks,
such as Scannet V2 (Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., & Nießner, M. (2017))[22],
S3DIS(Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016))[23], Se-
manticKITTI(Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019))[24],
nuScenes(Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., ... & Beijbom, O. (2020))[25]. One of
the main features of current Knowledge Distillation methods in 3D is that they focus mainly on either object detection
or lidar Semantic Segmentation. Those methods mainly focus on outside datasets for self-driving applications. On the
other hand, the Scannet V2 dataset focuses on indoor scans. Those differences are crucial, as they make a difference
when using some specific methods (e.g. Augmentation techniques like Mix3D[4]).

Lidar Semantic Segmentation is an area that has seen significant advancement in 3D knowledge distillation. One
of the examples is Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., & Wang, J. (2019)[26], that suggest simultaneously dis-
tilling knowledge at three different levels: pairwise similarity, pixel-level, and holistic. Moreover, it is well introduced
in the "Point-to-voxel knowledge distillation for lidar semantic segmentation" paper by Hou, Y., Zhu, X., Ma, Y., Loy,
C. C., & Li, Y. (2022) [27], which suggests using point-to-voxel knowledge distillation approach for lidar Semantic
Segmentation. Also, there is an approach which is targeting object detection tasks in 3D but is also able to transfer its
knowledge to 3D Semantic Segmentation. This is a paper suggested by Yang, J., Shi, S., Ding, R., Wang, Z., & Qi, X.
(2022)[28], which suggests its 3D KD pipeline, but their suggested pipeline performance is not good on the Semantic
Segmentation tasks.

There is a wide range of Attention-based Knowledge Distillation algorithms, that are working on Semantic Seg-
mentation tasks too. However, those architectural solutions are not relevant to sparse matrixes. Such examples of
methods are (Jiang, F., Gao, H., Qiu, S., Zhang, H., Wan, R., & Pu, J. (2023))[29],(ao, Y., Zhang, Y., Yin, Z., Luo, J.,
Ouyang, W., & Huang, X. (2022))[30]. Their evaluation tasks are done mainly by comparing with their relative Trans-
formers or very earlier methods. Thus, those methods are irrelevant to Convolutional networks and are not promising
in this case.

One of the recent studies was 3D Point Cloud Pre-training with Knowledge Distillation from 2D Images done
by ao, Y., Zhang, Y., Yin, Z., Luo, J., Ouyang, W., & Huang, X. (2022)[30]. They try to use 2D image knowledge
and distill information to the student model, which has a different architecture and is designed for 3D Point cloud
reconstruction. They evaluate the performance of the model with mainly object detection on Scannet V2 and also
Semantic Segmentation in 3D as well. They compare their results with similar task models, and their results are
around 46% mIoU which is 20% off from Mix3D[4] or Minkowski engine[2] methods.

4 Method

We present the Knowledge Distillation technique for 3D deep learning, aiming to make current state-of-the-art
methods smaller while maintaining their performance. With this approach, we make current models computationally
less expensive, and faster during inference.

In Smaller3d, we use numerous classic, and a mix of classic methods, to analyze and get a better version of
Knowledge Distillation for the 3D Semantic Segmentation task. We have reduced the number of neurons on every
layer of some top-ranking model architectures like (Minkowski Engine[2] and Mix3D[4]) and approximate results
while making them much smaller. By testing with versions Half and Quarter, we reduce the number of neurons from
N to N/4 and N/16 respectively, which makes a huge difference in required resources and faster inference.
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4.1 Model

For the Knowledge Distillation task in 3D Semantic Segmentation, we took Minkowski[2] networks architecture
as a base model. In particular, we selected standard Res16UNet34C suggested in MinkowskiNets(Choy, C., Gwak, J.,
& Savarese, S. (2019)) [2], which then was used by Mix3D[4] to run augmentation during the pipeline, that achieved
state-of-the-art result on Scannet V2 benchmark with test mIoU(78.1%) and voxel size 2cm. This architecture has
U-NET similar structure and is implemented with sparse tensors while keeping the logic of U-NET Encoder-Decoder
architecture. One example of those architectures is shown in Figure bottom(see 2), which we used for our experiment.
The one shown in the figure is Res16UNet34CHalf , which we are talking about later in this section.

Figure 2: Res16UNet34CHalf , which is similar architecture, like
Res16UNet34C but with half neurons on every layer. The reason we did not use
the Res8UNet34C name, is to make the naming much clear for the Knowledge
Distillation task. However, this name can be used for further analysis.

During this step, we have 2 new models, named Res16Net34CHalf and Res16Net34CQuarter. In the original
architecture of Res16Net34C[2], it is using (32, 64, 128, 256, 256, 128, 96, 96) number of kernels in each block
of Sparse Convolutional layers. In our experiments, we have used this same architecture based on implementations
of MinkowskiNets[2] and applied standard Res16Net34C to replicate the results of Mix3D[4] with their augmen-
tations. Then, for student networks, we purposed Res16Net34CHalf with (16, 32, 64, 128, 128, 64, 48, 48) and
Res16Net34CQuarter with (8, 16, 32, 64, 64, 32, 24, 24) number of kernels for each block of Sparse Convolutions.
During our analysis, we mainly focused on Res16Net34CHalf . We show during our analysis, that this structure is
capable of similar results, as the teacher Res16Net34C network. By reducing the number of neurons on each block,
it is possible to approximate the teacher model with the student model by 4 times reduction on the network number of
parameters with Res16Net34CHalf and relatively low approximation with 16 times smaller Res16Net34CQuarter

network.

4.2 Loss

In this subsection, we are going to describe different loss functions we used, to test Res16Net34CHalf and
Res16Net34CQuarter models to distill knowledge from Res16Net34C model learned with Mix3D[4] augmentation
technique. For the background of our losses, we See 2.

For Loss analysis, we are using initially classic loss functions. Firstly, we used full loss with temperature on
logits of student-teacher networks (See 2) as Knowledge Distillation initial method. By using a comparison of the
most trivial methods, to complicated ones. To do so, we first took α = 1, as it makes the Knowledge Divergence
Loss, suggested by Hinton, G., Vinyals, O., & Dean, J. (2015)[5], disappear from the full formula suggested by same
authors. Then, we tested the same Res16Net34CHalf model with α = 0.5, to understand the effect of the same
classic Knowledge Distillation method on the 3D Semantic Segmentation task.

We purpose a new loss function, which is mostly compatible with relatively smaller networks. To be more detailed,
we suggest using Upsampling convolution over the Feature Map of student network layers, which is transformed into
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the same dimension as the teacher model. Figure 1, it is shown 2 blocks, which transform the student Encoder and
Decoder last layer feature maps, to the same dimensionality as the teacher. Spatio Temporal Convolution layer is used
during this step with kernel size 1, which plays an Upsampling role for a number of neurons on the feature map layer.
For the Res16Net34CHalf model, we are using 128 -> 256 for the Encoder feature map, and 48->96 for the Decoder
feature map layers, as Convolution input -> output. This method, is similar to the Bottle Neck effect, like in the paper
by Tishby, N., & Zaslavsky, N. (2015, April).[31], that forces the student network feature map last layer to learn the
same information as teacher respective one. For example for the Res16Net34CHalf model, we make encoder 128
Sparse Convolutional block to represent the same information as the respective Res16Net34C 256 block. We have
done the same technique for Encoder’s last Feature map layer, by Upsampling 16->32(See 1). This method is similar
to the Dimensionality reduction method(see examples by Van Der Maaten, L., Postma, E., & Van den Herik, J. (2009)
[32]). A similar idea is also used in AutoEncoders and there is also a paper by Wang, Y., Yao, H., Zhao, S., & Zheng,
Y. (2015)[33], which proves, that in autoencoder networks, dimensionality reduction effect is more significant.

Another assumption of the new layer applying for the loss function is making the training process faster. During
the backpropagation process, when the model output is taken not only from the last layer but also from the intermediate
layers, we are making the gradients relatively small. This is because, the gradient of encoder feature map loss, is only
included before the encoder network, while the gradient of the last layer includes the encoder + decoder network while
passing through the neural network and backpropagating via chain rule. This problem is described in numerous papers,
such as the paper by Hochreiter, S. (1998) [34]

5 Experiments and Results

In this section, we present our experiments and results of different loss functions for Knowledge Distillation on
3D Semantic Segmentation. We evaluate our results on the Scannet V2 dataset[22]. We have used both standard loss
functions purposed by Hinton, G., Vinyals, O., & Dean, J. (2015)[5], and also our suggested loss functions(explained
on 4.2. Our results show that by using Knowledge Distillation methods, we can get similar results as state-of-the-art
models, by significantly decreasing model parameters and making inference faster as well. We also show, that by using
feature map loss functions, we increase the performance and make training more stable and faster. For background,
we suggest looking at 2.

5.1 Model selection

For better knowledge distillation tasks, a really good teacher model should be selected. To do so, we have selected
Res16Net34C architecture suggested by MinkowskiNets[2] as the teacher model and trained it with an augmentation
technique improved by Mix3D[4]. For student network, we selected Res16Net34CHalf and Res16Net34CQuarter

architectures(explained on 4.1). During this step, we decreased our model sizes with the following table shown below
1.

Table 1:
The validation results are done on Scannet V2 dataset.

Model Number of Parameters(millions) Val mIoU
Res16Net34C 39.7m 69%

Res16Net34CHalf 9.6m 66.4%
Res16Net34CQuarter 2.3m 60.6%

As you can see, the model parameters decreased significantly (around 4 times each step). We show around a 2.6%
difference of mean Intersection over Union between models trained with Res16Net34CHalf and Res16Net34C
while making a 4 times smaller network with the same architecture. Our model parameter reductions are done, by
symmetrical reducing the number of kernels on each block of Sparse Convolutions, by 2 and 4 times respectively
for Res16Net34CHalf and Res16Net34CQuarter models. This means, a reduction of model parameters with N2,
which is 4 and 16 times smaller model. To evaluate this approach, we have used different loss functions over the same
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network architectures, to analyze the performance of models, on train and validation Datasets. Model evaluations are
done on the Scannet V2 dataset, by using training and validation split. For more details(per class) analysis, see 5.6.

5.2 Dataset

During the analysis, the Scannet V2 dataset, which contains rich and diverse 3D semantic segmentation informa-
tion, was employed as a benchmark to systematically evaluate and compare the performance of various Knowledge
Distillation methods. This approach ensured a comprehensive understanding of the effectiveness and potential of each
method in the context of 3D deep learning models. For more details, the Scannet V2 dataset is a large-scale dataset for
3D scene understanding and reconstruction. It contains a collection of RGB-D images, 3D point clouds, and semantic
labels for indoor scenes captured using commodity depth sensors. The dataset was introduced by Dai, A., Chang, A.
X., Savva, M., Halber, M., Funkhouser, T., & Nießner, M. (2017)and has since been widely used in research for tasks
such as semantic segmentation, instance segmentation, and 3D reconstruction.

The dataset consists of 1513 scans, each containing a set of RGB-D images and corresponding 3D point clouds,
captured by an RGB-D sensor such as the Microsoft Kinect. The scans cover a variety of indoor scenes such as
apartments, offices, and public spaces, with different furniture, decorations, and layouts. The dataset also provides
semantic classes for each point in the point cloud(with a total count of 20), including labels such as wall, floor, bath,
chair, table, and so on. The annotations are provided at three levels of detail: coarse, fine, and instance-level.

5.3 Stable training

We suggest using additional loss functions, by using Upsampling layer over Encoder/Decoder feature maps. This
way, we have more control over network training and what the network learns. In analysis, we found out, that as long
as you increase control over the network, the training process becomes much more stable. For example, in the first
iterations of student networks, with the architecture of Res16Net34CHalf , we show that the training of networks is
much more stable when we include Feature Map loss(explained on 4.2. It is due to the fact, that we force the model
to mimic the feature map space, by making student layers Bottle Neck. Hence, the model tries to minimize loss, by
moving directly to the feature map. See the example in the table below.

Figure 3: First 200 Epochs that run on our tested 4 models (that are from
Res16UNet34C_Half architecture). It shows that by adding additional losses
to keep in control the distillation process, we make the training process more
stable at the beginning of the process.

The idea of making training more stable, allows us to make a much higher learning rate, which itself allows faster
training with a higher learning rate. A similar idea has been used by Gao, M., Shen, Y., Li, Q., Yan, J., Wan, L., Lin,
D., ... & Tang, X. (2018).[35], which makes the training stable, by giving weights to the classes of the network.

5.4 Supplementary Materials

During our analysis, we included both original and Replicated results of MinkowksiNet[2] with data augmentation
of Mix3D[4] method. Our analysis here is done on Scannet V2 dataset[22]. We separated Supplementary Materials
sections for our research, that is describing details about the training process, and also details of our experiments.
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5.5 Training (Supplementary Materials)

To apply different losses suggested by us (see section 4.2), we implemented the hydra config file, which contains
all loss functions we applied. Those combinations are explained in the ConfigCombinations section. We also included
detailed training information in Table 5.6, which provides details about hyperparameters α and T.

Our experiments were conducted using a single 1080 8GB GPU, providing sufficient computational power for our
training needs. Each training session took around four days to complete. We utilized the CUDA 10.1 library and the
PyTorch framework for our experiments. To be more specific, we used MinkowksiNet[2], which is an engine designed
specifically for 4D-SpatioTemporal ConvNets and is a key component of MinkowksiNet[2] and Mix3D[4].

In addition to the mentioned points, we used the StepLR learning rate scheduling technique, which adjusts the
learning rate at specified intervals, leading to more efficient convergence. Following the standard evaluation metrics
from previous works, we used mean Intersection over Union (mIoU) and mean Accuracy (mAcc) for evaluation.

5.6 Additional Information (Supplementary Materials)

The experiments are done with a fixed T value (suggested by [5]). Also, we have changed the α parameter on
our first experiment, by first picking it 1, which means we use only standard cross entropy loss over label and student
network predictions. Then, in our further experiments, we used α = 0.5, which proved to be better, as suggested by
[5]. The results of this, are included on 5.6 first and second student network results.

This section also includes per-class analysis. As demonstrated, our last model, based on our proposed loss with
Encoder and Decoder feature map (explained in section 4.2) and model (explained in section 4.1), performs better in
some cases (for example, picture or bed) than the four times larger teacher model Res16Net34C [2]. However, in some
cases, the student model fails to replicate similar results to the teacher in representing 7 specific classes, and this is
done by a relatively large margin (cases like sink (by 8%), and shower_curtain (by 6%)).

Table 2: Measurements of models by validation and different class mIoU
Models Teacher Networks Student Networks All are based on Res16UNet34C

Mix3D Replicated Half Half Half Half Quarter
voxel(5cm) X X X X X X X
α 7 7 1 0.5 0.5 0.5 1
T 7 7 1 1 1 1 1
DecoderLoss 7 7 7 7 X X 7
EncoderLoss 7 7 7 7 7 X 7
mIoU 69.1% 69% 65.9% 66.3% 66% 66.4% 60.6%
By Class

bathtub 81.1% 80% 79.5% 79.3% 77.2% 79.7% 74.1%
bed 79.2% 80.2% 78.8% 78.9% 78.2% 79.6% 76%
bookshelf 78.1% 78.4% 72.9% 77.3% 75.8% 75.8% 71.6%
cabinet 63.9% 64% 61.0% 63.7% 61.4% 63.3% 56.4%
chair 89.2% 90% 87.1% 86.9% 87.3% 88% 83.4%
counter 62.2% 58.1% 59.3% 59.5% 55.5% 61.3% 54.8%
curtain 67.0% 64% 60.2% 61.2% 58.7% 60.0% 54.2%
desk 62.1% 63.8% 60.1% 62.7% 59.3% 62.5% 56.7%
door 59.3% 60% 55.4% 54% 55.4% 55.5% 49.8%
floor 93.9% 93.9% 93.5% 93.6% 93.5% 93.7% 92.7%
otherfurniture 54.3% 56.8% 56.3% 55.4% 55.5% 55.8% 45.7%
picture 25.6% 25% 23.9% 24.3% 24.3% 26.1% 16.1%
refridgerator 54.1% 54.7% 43.2% 44.8% 48.2% 51.4% 40.7%
shower_curtain 64.0% 63.8% 62.4% 61.9% 61.5% 58% 47.7%
sink 64.1% 64.3% 57.1% 54.3% 56% 56% 46.4%
sofa 81.1% 80% 77.5% 77.2% 78.1% 77.8% 74.1%
table 70.8% 71.8% 71.1% 70.9% 70.4% 71.5% 66.1%
toilet 89.8% 90.4% 83.6% 85.3% 86.9% 85% 79%
wall 82.1% 82.7% 80.6% 80.5% 80.5% 81% 77.4%
window 59.8% 58.5% 55.6% 54.4% 54.6% 54.7% 50.5%
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This analysis is done using a 5cm voxel size. We show, that in some cases(for example picture, or bed) our sug-
gestedRes16Net34CHalf model performs better than the 4 times bigger teacher modelRes16Net34C[2]. However,
in some cases, the student model fails to replicate similar results to a teacher, to present specific classes, and this is
done by a relatively large margin(cases like a sink(by 8%), and shower_curtain(by 6%).

6 Conclusion

In this paper, we have presented the Knowledge Distillation technique for 3D deep learning, specifically for the
3D Semantic Segmentation task. By employing this technique, we aimed to reduce the size of state-of-the-art models
while maintaining their performance, resulting in computationally less expensive and faster inference.

Our experiments with various model architectures, such as Minkowski Engine[2] and Mix3D[4], demonstrated
the effectiveness of our approach. We successfully reduced the number of neurons in each layer by a factor of 4 and
16, while still approximating the performance of the original models. We also proposed new loss functions, which
provided additional control over the distillation process and led to more stable and faster training.

Our results show that Knowledge Distillation techniques can be effectively applied to 3D Semantic Segmentation
tasks, providing a viable solution for reducing the model size and computational requirements without sacrificing
performance. Furthermore, our proposed loss functions, which utilize Upsampling over encoder/decoder feature maps,
offer an additional level of control that contributes to increased training stability and faster convergence.

In conclusion, our work demonstrates the potential of Knowledge Distillation for 3D deep learning tasks and
provides a foundation for future research in this area. By making current models smaller and more efficient, we hope to
enable the deployment of advanced 3D deep learning techniques in real-world applications with limited computational
resources.
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