
Retargeting Optimization for Refinancing Car
Loans: A Case Study of a US-based Lender

Lia Harutyunyan

Bachelor of Science In Data Science

COLLEGE OF SCIENCE AND ENGINEERING

AMERICAN UNIVERSITY OF ARMENIA

Supervisor: Anna Sargsyan

Yerevan, Armenia

Abstract— Gradient boosting methods have
been proven to be a very important strategy.
Many successful machine learning solutions
were developed using the XGBoost and its
derivatives. The aim of this study is to
investigate and compare the efficiency of
XGBoost, LightGBM and Logistic Regression
methods on car loan retargeting problem. Car
loan dataset is used in this work which contains
232 features and 9,500,000 records. For the
purpose of the study, the features are analyzed
and several techniques are used to rank and
select the best features. For filling in the
missing values the MissForest, KNN and other
simpler strategies, like filling with 0s and
mean/median methods have been compared.
The implementation indicates that the
LightGBM in combination with MissForest is
faster and more accurate than Logistic
Regression and XGBoost using a variant
number of features and records.

Keywords— Classifier, XGBoost(Extreme
Gradient Boosting), LightGBM(Light Gradient
Boosting Machine), Logistic Regression,
MissForest, Auto, Loan refinancing

INTRODUCTION

PROJECT BACKGROUND

The presented capstone is a part of the
projects performed by Plat.ai company.
The company is located in Armenia and
works with customers from the US. Plat.ai
works on the same name engine which is
an artificial intelligence machine, designed
to create real-time decisions. This tool
adapts to customers’ platforms or systems.
The company gives personalized approach

Capstone BS DS Lia Harutyunyan ©2022

to data analytics and provides accurate
insights into customers’ data.

This project is a case study of a US-based
lender and its outcome is a tool for
retargeting optimization for refinancing car
loans.

DESCRIPTION OF THE TASK

The capstone project’s main task is to build
a classification model to optimize the
retargeting process of one of US lenders.
That is people, who have car loans in
different agencies, to be analyzed based on
different features (e.g. credit history, terms
of previous loans, demographics). The
target of the analysis is a binary variable.
When the target is 1, then the customers
who received the email with the offer
accept that, when it is 0, then the
customers reject the received offer. The
main task is, based on 232 features
available in the customer database, to
identify the clients who are more likely to
accept the offer of refinancing their loans.
Overall, the data has both categorical and
quantitative features. Some of the features
presented in the list are: FICO autoscore,
FICO delta autoscore, Mortgage loans,
personal loans, tradeline information
concerning different types of loans. Also,
loan rates that the customer has now and
rates that are offered for retargeting. To
determine FICO Auto Scores, FICO first
calculates the “base” scores, which are the
traditional credit scores (which ranges

between 350-800) then FICO adjusts the
calculation based on industry-specific risk
behavior to create tailored auto scores. A
tradeline is a record of activity for any type
of credit extended to a borrower and
reported to a credit reporting agency. A
trade line is established on a borrower’s
credit report when a borrower is approved
for credit. The tradeline records all of the
activity associated with an account.

With the rise of auto loans, many people
tend to take their loans through different
internet platforms. The main idea of this
project is to construct a tool that will
generate the preferable customers that have
a high chance for accepting loan
retargeting options. Having the list of 9.5
million users with previous decisions if
they have accepted or denied the loan
retargeting opportunity and using different
models, the aim is to find the main model
that will predict most accurately if the user
is going to accept or reject the offer. The
data has many missing values. Since for
the modeling purpose it is very important
to correctly fill the missing values, three
different approaches have been
experimented to get the best result.

Three models were constructed, these are
LightGBM, XGBoost and Logistic
Regression. As the problem is a binary
classification, it is most common to
evaluate the models using AUC scores.
The goal of this study is to find the most
accurate model that will give best
predictions of the users who have high
chances of agreeing to offer.

DATA SOURCE

The data is provided by Plat.ai's customer
which is a lender company. The original
data contains 232 features and 9.5 million
loan owners. The target column is the
“Lead Flag” column, which is a binary
column of values 1 and 0, indicating if the
customers responded to the offer sended by
mail or not.

LITERATURE REVIEW

GRADIENT BOOSTING

Boosting is used very widely for getting a
strong model from a large number of
relatively weak and simple models. [2] By
weak models different machine learning
algorithms whose accuracy can be only
slightly better than random guessing are
considered.

In the gradient boosting algorithm
multiple models are trained sequentially.
For each new model the Gradient Descent
method [3] is used to gradually minimize
the loss function. The general approach is
to build a linear combination of simple
models (basic algorithms) by reweighting
the inputs. Each subsequent model (usually
a decision tree) is built to give more
weight and preference to previously
incorrectly predicted observations. [10] .

Since the nodes in a decision tree consider
a different branch of features for selecting
the best split, all the trees are different. So,
they can capture different outputs from the
same data all the time. The Gradient Tree
Boosting algorithm considers decision
trees as the weak learners.
The gradient tree boosting algorithm is
built sequentially: for each next tree, the
model considers the errors of the last tree.
The decision of every successive tree is
built on the mistakes made by the previous
tree. Gradient Boosting algorithms are
mainly used for classification and
regression problems.

XGBOOST

XGBoost is a machine learning algorithm
based on a decision tree and using the
gradient boosting framework. In contrast
with prediction tasks that use unstructured
data (such as images or text), where an
artificial neural network outperforms all
other algorithms or frameworks, for small
structured or tabular data, decision
tree-based algorithms take precedence.

The XGBoost algorithm, short for Extreme
Gradient Boosting, is a modified version of
the gradient boosting algorithm. The
working procedure of both is almost the
same. The only crucial difference is that
the XGBoost implements parallel
processing at the node level. This makes it

more powerful and fast than the gradient
boosting algorithm. By including various
regularization techniques and by setting
the hyperparameters XGBoost reduces
overfitting and improves overall
performance. So, the speed is the biggest
strength of XGBoost. The efficient use of
Random Forest requires generating each
tree in parallel on a cluster, and deep
neural nets are usually run on GPUs,
XGBoost can be run on a single CPU in
less than a third of demonstrated by either
of the other methods. [11] Using XGBoost
lets one not worry about the missing values
in the dataset. During the training process,
the model itself learns where to fit the
missing values. XGBoost is mainly used
for classification problems but can be used
for regression problems. Also this
algorithm is highly effective in reducing
the computing time and providing optimal
use of memory resources.

So, XGBoost functions around tree
algorithms. The tree algorithms consider
the attributes of the dataset, the features or
columns as the conditional node or the
internal node. According to the condition
at the root node, the tree splits up into
branches or edges. The last branch that
does not produce other branches is called a
leaf node. Leaf nodes are results of
completed splitting and they are taken as
reaching the decision.

The concept of XGBoost revolves around
gradient-boosted trees using supervised

learning as the principal technique.
Supervised learning basically refers to a
technique in which the input data,
generally the training data pi having
multiple features (as in this case), is used
to predict target values si. The predicted
value si helps to classify the problem,
whether it is regression or classification.

The primary goal is to extract the right
parameters from the training dataset.
Instead of training all the trees in parallel,
XGBoost optimizes the learned tree
(training) and adds a tree at every step.

The example of using the XGBoost
algorithm to construct a P2P loan default
prediction model has shown the prediction
accuracy rate of the XGBoost algorithm is
97.705% . [7]

LIGHTGBM

LightGBM is a gradient boosting
framework that uses tree based learning
algorithms. Faster training speed and
higher efficiency, lower memory usage,
better accuracy are the advantages of
LightGBM. It also supports parallel,
distributed, and GPU learning, thus it is
capable of handling large-scale data.

With increasing the number of features in
the data the efficiency and scalability of
the Gradient Boosting Model are lowering.

The Light Gradient Boosting Model or
LGBM is used to solve this problem. It
uses two types of techniques: Gradient
Based on Side Sampling or GOSS and
Exclusive Feature bundling or EFB.

GOSS excludes the significant portion of
the data part which have small gradients.
After that it uses the remaining data to
estimate the overall information gain. The
data instances which have large gradients
actually play a greater role for computation
on information gain. GOSS is used to get
accurate results with a significant
information gain while using a smaller
dataset than other models.
EFB focuses on bundling the mutually
exclusive features.

With the help of GOSS and EFB,
LightGBM can significantly outperform
XGBoost. [4]

So, LightGBM decreases the number of
features by bundling features together. It
speeds up tree learning. High
dimensionality data has many mutually
exclusive features. The mutually exclusive
features never take zero values
simultaneously. LightGBM safely
identifies such features and bundles them
into a single feature to reduce the
complexity because the number of features
is always less than the number of bundles.

LightGBM Decision Tree-type method has
enabled an accuracy of 98% studied click

patterns over a dataset that handles 200
million clicks over four days. [9]
Protection methods to detect click frauds
are highly demanded by e-commerce
companies paying for the clicks.

LOGISTIC REGRESSION

Logistic Regression is used to predict the
probability of occurrence of some event
based on the values of a set of features. To
do this, the so-called dependent variable is
introduced, which takes only one of two
values - as a rule, these are the numbers 0
(the event did not occur) and 1 (the event
occurred). So, it is a supervised ML
algorithm used for binary classification
problems (when target is categorical).
Logistic Regression's range is bounded
between 0 and 1. Logistic Regression does
not require a linear relationship between
inputs and output variables.

Logistic Regression uses “maximum
likelihood estimation (MLE)” as a loss
function, which is a conditional
probability. If the probability is greater
than 0.5 (as the default threshold), the
predictions will be classified as class 0.
Otherwise, class 1 will be assigned.

RANDOM FOREST AND BORUTA

Random forest algorithm consists of a
large number of individual decision trees
that operate as an ensemble. Each
individual tree in the random forest
produces a class prediction and the class
with the most votes becomes the model’s
prediction. The wisdom of crowds is the
basic principle behind random forest, and
it's a simple yet effective one. The
algorithm is used for classification,
regression and clustering problems. The
main idea is to use a large ensemble of
decision trees, each of which by itself
gives a very low quality of classification,
but due to their large number, the result is
good.

For example, Logistic Regression models
are used to study effects of predictor
variables on categorical outcomes and
normally the outcome is binary, such as
presence or absence of disease. [13]

The Boruta algorithm is a wrapper built
around the Random Forest classification
algorithm. It is the implementation of the
idea of assessing the importance of
predictors using random permutations of
their values. [6] The Boruta algorithm tries
to capture all the important, interesting
features in the data set with respect to an
outcome variable. The time investment is
significant for large datasets, but it is
necessary to ensure selection of relevant
features based on statistical significance.

Random Forest Extreme Gradient
Boosting (RF-XGBoost) is used byNon
Banking Financial Institutions, for
example, for prediction whether to approve
the loan or reject it. Here, a Random Forest
classifier is used to get the importance of
each feature. [5]

KNN

K-Nearest Neighbor in Missing Data
Imputation is used to group the data set
into different groups. The KNN algorithm
assumes that similar things exist in close
proximity. In other words, similar things
are near to each other. So, KNN tries to
predict the correct class for the test data by
calculating the distance between the test
data and all the training points. Then
selects the K number of points which are
closest to the test data. The KNN
algorithm calculates the probability of the
test data belonging to the classes of ‘K’
training data. [1] The selected class is the
one that holds the highest probability. To
improve the accuracy of missing value
estimation for data, a combination of
KNN-based feature selection and
KNN-based Imputation is used.[8]

MISSFOREST

MissForest is a machine learning-based
data imputation algorithm that operates on
the Random Forest algorithm. A study,
conducted by the authors of this algorithm
[12] in 2011 compared its imputation
methods on datasets with randomly
introduced missing values. As a result,
MissForest outperformed all other
algorithms in all metrics, including
KNN-Impute, sometimes by over 50%.

As a first step, MissForest algorithm filles
in the missing values using median/mode
imputation. The missing values are marked
as ‘Predict’. The other rows are training
rows. They are fed into a Random Forest
model trained to predict. The generated
prediction for that row is then filled in to
produce a transformed dataset.

METHODOLOGY

I. DATA CLEANING AND FEATURE

ENGINEERING (X1)

As the dataset comes with 232 features, the
first step of the work is evaluating and
understanding each feature’s importance
for the idea of the project. This evaluation
is done by getting the meanings for each
feature and how it is represented in the

dataset, what is the range of the features.
The next step of the evaluation is
measuring the number of missing values,
are they easily replaceable in terms of their
meaning. This brings to identifying the
unimportant features, which means that
these features can easily be dropped, so by
this 61 of the features are eliminated from
the main dataset. Having a cleaner dataset
and continuing the investigations, features
with missing values that can be easily
replaced are separated, some features’ NA
values needed to be filled with specific
techniques. So, 49 features’ NA values
were replaced by 0 and 28 features’ NAs
were replaced by columns’ means. This
step is a starting point, and appears to be in
the data preparation part. As the data came
until this step had already undergone
several modifications, there was no need to
go much deep into cleaning the data.
Anyway having this amount of columns is
not a very favorable option for continuing
the work and identifying the models that
can perform well. To overcome this
problem feature engineering techniques
can be used. With the help of models it is
easy to identify the features with their
importance evaluations. For the models to
work properly, it is necessary to have data
cleaned from the unimportant features.

When the dataset is free of the redundant
columns and the missing values are
partially handled, the models for getting
the important features can be used. The
feature engineering needs to be calculated

by a model. For this purpose the right
model should be identified, so several
models were experimented and the one
with the best result was chosen as the main
model. There are several models that could
be appropriate for detecting the feature
importance of the dataset’s features, these
are LightGBM, XGBoost and Boruta. The
last model was chosen as an experimental
stage. The Boruta algorithm is a wrapper
built on the Random Forest classification
algorithm. The main problem with the
Boruta is that it does not have any internal
logic for replacing the NA values and also
the time that it takes to run the model is
too long. In contrast, the boosting
algorithms do the task of filling missing
values internally, so that there is no need to
solve this problem manually at first. Even
when the missing values were filled before
running the Boruta algorithm, as it uses
Random Forest, the task took too long to
run. The boosting algorithms obviously
outperformed Random Forest, as they do
fill missing values and run the model in a
very short amount of time. So, the most
appropriate models for the data turned out
to be the Gradient boosting decision tree
techniques, like XGBoost and LightGBM.
As these too give very similar results, the
LightGBM was chosen as the main
algorithm for feature selection because its
performance speed and results compared to
the XGBoost are better, this is a very base
idea of the LightGBM model to work
faster and give more accurate results.
Firstly, the model was run on the whole

dataset, further, when the list of features
and their corresponding importance gains
were evaluated, only ones with importance
greater than 0 were selected. Having this
list, the model was run again and from the
results of the second run of the model, the
main features needed to be selected by
looking at the meanings of the features and
how they can be related to the problem.
The purpose was to find the first 50 most
important features and to suppress others.
Of course, the importance gain of each
feature was a good measure, but also the
main idea was to find features that would
logically suit the problem that needed to be
solved. That is having features important
for qualifying the customers as ones that
would be appropriate to choose and once
that won't.

So, to accomplish this purpose, the
features needed to be analyzed one by one
and to leave only ones that would suit.
Finally, the 50 features were selected and
the other features were dropped from the
datasets [Figure 1]. So, the result of this
step is a smaller dataset with a limited
number of features whose importance
gains are appropriate for the further
analysis. When the dataset with the 50
features was ready, the dataset was divided
into train and test datasets. These two
datasets are saved separately and they will
be called in order to use them as train/test
datasets. Further analysis should be done
on these datasets, there is no other need for
further splitting of the dataset.

Figure 1: First 50 important features selected by logically fitting to criterias.

II. DATA SAMPLING (X2)

As the dataset received from the
customer included around 9.5 million
rows, the approach for working with it
was to use sampling techniques, to get
the same dataset construction with only
10% of the original number of rows. This
idea came from experiments with the
dataset, which obviously took too long in
time. For the purpose of getting an
equivalent proportion of the target
column’s values, the approach of
sampling the data with appropriate
percentages of 1s and 0s was chosen. The
main idea behind the approach is to
divide the dataset into two datasets,
based on splitting the target column’s
values of 1s and 0s to two datasests and
to sample the 10% of each dataset. In
order to get the right rows from each
sub-dataset the random state was
provided, which guarantees to always
give the same results both for the divided
dataset and for the whole dataset. After
having the appropriate percentages of
rows from each dataset, the two datasets
are being concatenated. This step is a
crucial point before starting any further
research. For this given dataset, the
sampling will not provide a misguidance
for the models as it is quite
homogeneous. Using the sample of the
data helps in reducing the time and

memory spent on filling the missing
values and running the model.

III. REPLACING NULLS(X3)

The main dataset that should be used for
fitting the models will result in having 50
columns and sampled to 10% of the
original dataset. This should be the main
shape for the dataset. Besides the shape
of the dataset, it has a crucial issue with
the number of missing values. Models
should be run on datasets with no
missing values. Here the dataset allows
three methods for replacing the null
values. Every method for replacing NA
values is run on the train and test datasets
separately as already mentioned above,
the data with most important features is
divided into train test datasets to escape
splitting it every time of running each
model. So, the first method that is used
for this purpose is filling missing values
with 0s. This is a very base and simplest
method for imputing missing values.
When the missing values are filled the
two datasets are saved separately. The
second method is to fill values with mean
and median. When the mean is too close
to the median, the first one is used to
replace the nulls, when the mean is
bigger than the median the last one is
used to fill the values. As for the first
case, when the mean and the median are
close, the data has a symmetrical
distribution, that means that imputing

mean value will not change the
distribution much. In contrast, when the
mean differs from median, the
distribution is skewed, the mean in this
case is biased by the values at the far end
of the distribution, so imputing missing
values by median is more appropriate.
Lastly, for filling the missing values,
some model needs to be chosen to do the
job. As the main idea for doing this is to
get a more or less appropriate
replacement for missing values, models
like KNN would work. After some
investigation and some experiments, it
was obvious that running KNN would
take too long, which is obviously a very
inconvenient solution. So, after some
research a model named MissForest
turned out to deal with the job in a most
accurate and fastest way. The model was
run on the sample of the data and it took
14 hours to complete the job. The sample
of the dataset and the main dataset do not
give much difference as the dataset is
quite homogeneous but as a matter of
fact it would take around 7 days for the
model to run on the whole dataset,
having the exact same parameters of the
computer. Finally, there are 6 datasets, 3
sets of train/test datasets each set with a
different method of handling the missing
values. Further analysis will be done on
each of the datasets separately.

IV. PARAMETER TUNING(X4)

When the shape of the datasets are
modified and the missing values are
filled, the datasets are ready for running
the models on them. Before running the
models, their parameters should be tuned.
Based on the previous experiments done,
the main models that can be considered
well suited for the given data, are the
models that work with gradient boosting
algorithms, such as XGBoost and
LightGBM. These models are ones that
need to be analyzed and to choose one
with the best score. In cooperation with
these models, as the data is binary,
Logistic Regression is also chosen as the
main model. So, these three models are
chosen as the base ones and the best one
needs to be identified based on the
roc-auc score. The best parameters for
the gradient boosting models should be
chosen. Their parameters need to be
tuned. The basic parameters that need to
be tuned for both LightGBM and
XGBoost are learning rate which controls
the contribution of all the vulnerable
learners in the final output and max depth
which is for the maximum depth of the
individual regression estimators to limit
the number of nodes in the tree. To be
able to identify the best parameters,
roc-auc scores are computed for each set
of parameters, that is parameters are
chosen in a range between 0.1 to 0.9 for
learning rate and 1 to 5 for max depth.
The checking is done through running a

double for loop and one by one
incorporating numbers from these ranges.
The models are fitted on the train
datasets and the prediction scores of the
test datasets are saved. From experiments
it was obvious that values more than or
less than the ranges given, lower the
roc-auc scores for the test dataset, even
though they increase the roc-auc for the
train dataset. So, the obvious overfitting
was encountered for values other than
these ranges.

Algorithm 1 is an example of the for
loops that construct a dictionary of the
best results for the specific model. The
MODEL refers to XGBoost or
LightGBM classifiers. The values of the
parameters and the scores are saved in
the results dictionary, which then will
give the parameters with maximum
scores.

Algorithm 1: parameter tuning___

for i in range [0.1, 0.9]

for j in range [0,5, 1]

model = MODEL(learning_rate=i,max_depth=j)

model.fit(x_train, y_train, eval_metric=’AUC’)

Y0_MODEL = model.predict_proba(x_train)[:,1]

Y1_MODEL = model.predict_proba(x_test)[:,1]

results[‘learning_rate’].append(i)

results[‘max_depth’].append(j)

results[‘score_train’].append(roc_auc_score(y_train,
Y0_MODEL)

results[‘score_test’].append(roc_auc_score(y_test,
Y1_MODEL)

This type of parameter tuning for
LightGBM and XGBoost are done on
three different datasets. These are ones
filled with missing values with different
methods. First dataset’s missing values
are filled with 0s, the second dataset’s
missing values are filled with
mean/median and the last dataset’s
missing values are filled with MissForest.
Finally, the learning rate and max depth
parameters are chosen for each dataset
for two boosting models. These
parameters are going to be used in the
further models. It is crucial to escape
overfitting problems during parameter
tuning. When the training roc-auc score
is too much higher than the auc score for
the testing dataset the model seemingly
has overfitted the data. In such cases, the
parameters need to be adjusted so that
testing and training scores do not differ
much. The final parameters that are
chosen give a difference of the testing
and training scores for less than 1 which
is a good measure to choose the
parameters as ones that will work fine for
the models. From the training datasets’
auc scores it is obvious that the best
models have around 70% of accuracy
based on the model type. So, puting into
account that the difference of train and
test scores should not differ much, the
testing scores are expected to be not less
than 70%. Lastly, the Logistic Regression
is run and compared to Logistic
Regression with regularization, it turned
out that running Logistic Regression with

‘L1’ regularization gives the best result
for roc-auc score, which is also important
to note that it was approximately 70% for
the both train and test datasets. The three
models are ready to be fitted and
predicted for the resulting datasets.

V. FINAL MODELS(X5)

When the datasets and the values for the
models’ parameters are ready, the final
models can be fitted for doing the
comparison. Each model should run on
three datasets separately. The resulting
test scores for each model run on each
datasets should be saved in a data frame.
Further, the data frame will provide the
best model based on the test scores of
each model. So the three different sets of
the dataset are loaded and need to be
used to fit three different models. These
models are XGBoost, LightGBM and
Logistic Regression. Each set’s train data
is used to fit the model and test data is
used to predict the target value and to get
the preferred roc-auc score. So, we have
overall 9 predictions and correspondingly
9 roc-auc scores to choose the best
model. The first model to run is the
LightGBM model, after getting the
resulting roc-auc score for the test dataset
it is saved for further comparison, the
same is done with XGBoost. The last
step for each dataset is to fit the Logistic
Regression and to get the roc-auc score
for it. For running Logistic Regression,
as it was already mentioned it turned out

that using regularization will give better
results for the given data. So, Logistic
Regression gives quite good results
which are very similar to ones that were
received with the boosting models. After
firstly fitting the Logistic Regression
model, the non significant features were
detected and dropped from the dataset.
The model was fitted again to get the best
and most accurate predictions on the
datasets for this type of model. Also,
when running Logistic Regression on the
data imputed by MissForest, the
importance plot for the impact of the
significant features on the target variable
is generated [Figure 2]. This steps are
done on each of the three datasets
separately. And when all the models are
finally fitted, there are overall 9 roc-auc
scores, and even though there is not
much difference between these scores,
the highest score comes from LightGBM
fitted on the dataset with MissForest as
the model for filling missing values
[Figure 3]. So, this model is chosen as
the best model for this particular problem
and this right model is going to be used
for validation datasets and for getting the
most accurate predictions for the
customers that are going to be chosen as
targeted customers. Below are the ROC
curves for the LightGBM model that is
run on the dataset whose missing values
are filled by MissForest algorithm
[Figure 4].

Figure 2: Feature impact on target

Figure 3: Comparison table for Models

Figure 4: ROC curves and AUC scores for
LightGBM and MissFores

VI. VALIDATION(X6)

When the final model is chosen with the
right parameters tuned and right method
for missing values, the prediction on the
validation dataset is done. For this
purpose, a validation dataset is used,
which comes with the same columns as
the dataset that was used for training and
predicting, except that it does not contain
the target column. The dataset has to pass
several phases before the prediction of
the LightGBM model is done. As it is
known that the data comes in a standard
format, which means having standard
column names and types as the train
dataset, it is quite easy to get only
columns important for the use. First of

all, the data should be prepared by filling
missing values of the features that are
known how to be filled. So, some
columns’ NA values get filled by 0s
other columns’ NA values by means, this
information about these features are
known from the investigations done in
the beginning. The step for dropping
unnecessary features is missed for this
part as, now after filling the missing
values, it is needed to choose only
columns that are in the important features
list. So, 50 most important features are
chosen. Finally, the dataset is ready for
analysis, but prior to that the missing
values still need to be filled. So, the
MissForest model is used. After running
MissForest and replacing all the nulls,

LightGBM is trained on the previous
training dataset and the trained model is
used for predicting the target value for
the clean validation dataset. The
prediction is done on the validation
dataset and the results of it will be the
information about each customer's
prediction probability for being a target
customer or not. For identifying such
customers, a probability threshold of 0.8
is set. So, the customers having predicted
probability greater than 0.8 are
considered as ones that are target for this
problem and they are the ones needed to
be separated and shown as the final
results of the research. Having the
customers probabilities and setting the
threshold, a target column of binary
values of 0s and 1s is made. By this
column it is easy to separate all the
customers who most probably will
respond to the needs of the company.
Finally, using this target column and the
IDs of customers the table of the targeted
customers is made and ready for use. For
visualization purposes, to see customers
from which part of the US are more
likely to respond, their ZIPCodes are
plotted on a map plot.[Figure 5]

Figure 5: Visualization of distribution of customers
through US

CONCLUSION

Boosting methods iteratively train a set
of weak learners. The weight of the
records is updated based on the
regression results of the previous
learners’ loss function. In this study
three methods were compared (XGBoost,
LightGBM and Logistic Regression) in
terms of performance and ROC-AUC
scores. While in this experiment there
was not much difference in time
consumed by different models on the
same system with the same dataset,
LightGBM proved itself to be
significantly more efficient than the other
two models. Among missing value
replacement approaches, MissForest
algorithm outperformed simple methods
of filling them with 0s and means. So,
the combination of LightGBM and
MissForest is proven to be the best

prediction tool for car loan retargeting
systems.

REFERENCES

1. Christopher, A. 2021 “K-Nearest Neighbor.” Medium
medium.com.

2. Daoud, E. A. et. al. 2019. “Comparison between
XGBoost, LightGBM and CatBoost Using a
Home Credit Dataset.” World Academy of
Science, Engineering and Technology
International Journal of Computer and
Information Engineering 13 (1).
https://publications.waset.org/10009954/compari
son-between-xgboost-lightgbm-and-catboost-usi
ng-a-home-credit-dataset.

3. Friedman, J. H. et. al. 2001. “Greedy function
approximation: A gradient boosting machine.”
Ann. Statist 29 (5).
https://doi.org/10.1214/aos/1013203451.

4. Ke, G. et. al. 2017. “Lightgbm: A highly efficient
gradient boosting decision tree.” Advances in
neural information processing systems 30.
https://proceedings.neurips.cc/paper/2017/hash/6
449f44a102fde848669bdd9eb6b76fa-Abstract.ht
ml.

5. Koduru, M.et. al. 2020. “RF-XGBoost Model for Loan
Application Scoring in Non Banking Financial
Institutions.” International Journal of
Engineering Research & Technology (IJERT) 9
(7).

6. Kursa, M. B. et. al. 2010. “Feature Selection with the
Boruta Package.” Journal of Statistical Software

36, no. 11
(https://doi.org/10.18637/jss.v036.i11).

7. Li, Zh. et. al. 2021. “Application of XGBoost in P2P
Default Prediction.” Journal of Physics:
Conference Series 1871 (6th International
Symposium on Advances in Electrical,
Electronics and Computer Engineering
(ISAEECE 2021)).

8. Meesad, Ph. et. al. 2008. “Combination of KNN-Based
Feature Selection and KNN-Based Missing
Value Imputation of Microarray Data.” 3rd
International Conference on Innovative
Computing Information and Control.

9. Minastireanu, E-A. et. al. 2019. “Light GBM Machine
Learning Algorithm to Online Click Fraud
Detection.” Journal of Information Assurance &
Cybersecurity 2019. 10.5171/2019.263928.

10. Natekin, A., and A. Knoll. n.d. et. al. “Gradient
boosting machines, a tutorial.” Front
Neurorobot. doi: 10.3389/fnbot.2013.00021.

11. Sheridan, R. et. al. 2020. “Extreme Gradient Boosting
as a Method for Quantitative Structure-Activity
Relationships.” J Chem Inf Model. 56 (12). DOI:
10.1021/acs.jcim.6b00591.

12. Stekhoven, D., and P. Bühlmann. et. al. 2011.
“MissForest--non-parametric missing value
imputation for mixed-type data.” Bioinformatics
. 28 (1). 10.1093/bioinformatics/btr597.

13. Todd, G. et. al. 2007. “Logistic Regression.” Methods
in Molecular Biology: Topics in Biostatistics
404.

