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Abstract— Past research has successfully demonstrated that 

humans are in fact able to perceive and respond to randomness 

in the environment. However, it is also well known that humans' 

understanding of random events is biased – they tend to see 

regularities in truly-random data. This tendency is referred to 

as the “cluster illusion”. This study focuses on two-dimensional 

point patterns to analyze the statistical properties of the 

distribution of subjective randomness by comparing it to the 

properties of the Poisson distribution. To do so, past research 

studies are reviewed and 2D dot patterns are generated utilizing 

different algorithms used in past behavioral experiments. The 

possibility of modeling subjective randomness with the Image 

Pyramid as well as its limitations are discussed. 
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I. INTRODUCTION 

The randomness of a process is often interpreted as how 
unpredictable each individual event within the series is [1]. On 
the other hand, the randomness of a process is typically 
evaluated based on its output, which is expected to exhibit no 
discernible patterns [2]. These two definitions of randomness 
are referred to as “primary” and “secondary” randomness [3, 
2]. Which of these two definitions do humans use to evaluate 
the randomness of the events – do they rely on the method 
used to generate the stimuli, or the properties of the output? 
And based on which properties of the latter do they make their 
judgements about randomness? For years, vast research has 
been conducted to answer these questions about humans’ 
perception of randomness. 

Randomness is a fundamental aspect of many natural and 
man-made systems. Studying human perception of 
randomness and the biases that are involved in it can help us 
identify and correct for the resulting errors in human decision-
making. Furthermore, it can have broader implications for 
developing deeper insights into human cognition and the 
nature of randomness itself. There are also many practical 
applications of the study of randomness, for example in risk 
management, statistical analysis, gambling, and other fields 
that rely on accurate prediction of uncertain outcomes. 
Another example is behavioral microeconomics, where 
understanding how people perceive randomness and make 
decisions based on that perception can help develop better 
agent-based economic models, as the actions of individual 
human agents can have big influence on the behavior of the 
model in the bigger picture. 

It has been shown that humans possess the ability to detect 
and respond to randomness [4]. However, past studies have 
demonstrated that humans have a biased perception of 
randomness in data, as they tend to see patterns where none 
really exist [5]. Data is perceived as more random when events 
are evenly distributed, compared to truly-random data. This 
phenomenon is known as the “cluster illusion”. Having a 

grasp of this illusion is significant for designing better systems 
that take the biases of human perception of randomness into 
account. The purpose of this study is to compare the two-
dimensional distributions of true- and subjective- randomness 
by analyzing them using the Poisson distribution. 

In the past, numerous studies have explored the human 
ability to perceive and respond to randomness in one-
dimensional (1D) and two-dimensional (2D) patterns. The 
main consistent discovery from research on the generation and 
perception of randomness in binary sequences (including 2D 
grids) is that humans tend to associate randomness with an 
excess of alterations between different types of symbols [2]. 
Wilke et al. [6] view this tendency of perceiving clusters in 
truly-random patterns as evidence that the human mind has 
evolved to expect resources (such as food and mates) in the 
natural environment in clumps or patches. 

In his Introduction to Probability Theory, Feller remarks: 
“To the untrained eye, randomness appears as regularity or 
tendency to cluster” [7, 2]. He describes the famous example 
of the flying-bomb attacks on London during the Second 
World War, which was widely believed to be non-random, as 
some parts of the city were hit repeatedly while some others 
were not hit at all. To test this hypothesis, the area of the city 
was divided into small square regions of equal area: as it 
turned out, the resulting distribution of the number of attacks 
per region closely followed the Poisson distribution, which 
would be expected if the attacks were in fact random [5]. 

In their study, Kahneman and Tversky [8] explored the 
phenomenon of human perception of clustering and 
randomness in 1D patterns (for example, binary sequences of 
“Heads” or “Tails” outcomes from tossing a coin repeatedly) 
using the local representativeness heuristic – judging the 
probability of an event based on how representative it is of the 
entire population; that is, the descriptive characteristics of the 
parent population are expected to be present locally in the 
smaller samples. However, the locally representative samples 
contain too many alternations and too few clusters, as 
compared to chance expectations. As a result, the locally 
representative samples, which humans tend to identify as 
more random, appear to be more regular than expected by 
truly-random processes. 

A similar conclusion was reached by Falk and Konold [2], 
who suggested that the human judgement regarding the 
randomness of binary sequences relied on the implicit 
encoding of the patterns. That is, the degree of randomness is 
based on how “hard” it is to encode the sequence using the 
relative frequencies of typical subsequences. On the one hand, 
this leads to biases and errors in the judgement of randomness, 
as sequences with an excessive number of changes between 
symbols are perceived as more random than their actual 
entropy and algorithmic randomness suggest. However, on the 
other hand, it also indicates that humans’ intuitive 



understanding of the concept of randomness is consistent with 
the mathematical view of randomness as maximal complexity. 

Some other studies focused on 2D dot patterns instead of 
1D sequences. Matsuda and Kaneko [9] investigated the 
human perception of order and disorder in discrete 2D space 
using dot patterns aligned on a square grid (4x4 square black 
areas, 8 of them containing white dots and the other 8 being 
uniformly black). The participants were briefly shown two 
patterns at a time, and after the patterns had been hidden from 
view, they were asked to report which one was the more 
disorderly of the two. The results were consistent with those 
of the previous studies focusing on discrete 1D space: the 
patterns with high gathering index and high repetition index 
tended to be rated as more orderly (less random) by the 
participants. Moreover, the high correlation between the two 
indices indicated that when the gathering index of patterns was 
low, the presence of repeated elements appeared to play a 
crucial role in determining the perceived degree of order and 
disorder. 

However, it is important to note that the human visual 
system is designed to process a retinal image that is two-
dimensional and continuous. The data can be one-dimensional 
or discrete, but it is uncertain whether the visual system 
processes the data shown on a computer screen in such a way. 
Therefore, studying the cluster illusion visually would require 
using the 2D continuous space. 

Evidences of humans’ perceptual sensitivity to variations 
in the relative clustering or regularity in 2D dot patterns can 
be found in studies such as those exploring the perceived 
numerosity of those patterns. It has been shown that regular 
patterns are generally perceived as more numerous than 
random ones, and random patterns are perceived as more 
numerous than clustered ones [10, 11]. Moreover, Dry et al. 
[12] demonstrated that the degree of clustering, randomness 
and regularity in the 2D dot patterns can influence the ease 
with which people can solve TSP (Traveling Salesman 
Problem) and MST-P (Minimum Spanning Tree Problem). 
The results indicated that the human performance on those 
problems progressively decreased as the stimuli varied from 
clustered, through random, to regular [12]. 

However, whether humans can successfully discriminate 
between regular, random and clustered dot patterns is a 
different question. Many studies have shown that, although 
their perception of randomness is biased, nevertheless, 
humans can in fact perceive and respond to it. In his study, 
Preiss [13] showed that the human participants were capable 
of assessing the degree of clustering, randomness or regularity 
of 2D dot patterns. The results of the subjective ratings of 
randomness were remarkably close to the actual scores (based 
on the nearest neighbor statistic) that were used to measure the 
objective randomness of those patterns. This implied that the 
participants seemed not only to possess certain amount of 
knowledge about the average distance between the nearest 
neighbors within a given pattern, but also the ability to 
estimate the average expected distance between nearest 
neighbors in a truly-random pattern that has a similar number 
of dots [13].  

Yamada et al.’s study [4] demonstrated that human 
observers are able to adapt to pattern randomness with the 
randomness aftereffect – after a prolonged exposure to a 
highly regular pattern, they tended to rate subsequent patterns 
as more random; and, conversely, if the initial pattern was 

highly random, they rated the following patterns as less 
random. The authors of the study suggest that this aftereffect 
may describe a mechanism present in the visual system that 
allows humans to distinguish randomness and regularity in the 
environment. Moreover, in a later study, Yamada [14] found 
some evidence to suggest that the visual perception of pattern 
randomness can be influenced by gender and age differences 
of the observers. 

In two separate studies conducted with a time difference 
of 11 years, Griffiths and Tenenbaum [15, 16] attempted to 
construct Bayesian frameworks for describing how humans 
make judgments about randomness. The underlying idea 
behind their research was that subjective judgments of 
randomness are based on statistical inference, and that humans 
use prior knowledge to make predictions about the likelihood 
of outcomes. In both studies they used the same visual stimuli 
which consisted of 12 dot patterns generated with a mixture of 
Gaussian and Uniform distributions, with 4 varying 
parameters that determined the visual properties of the 
images: number of dots, proportion of dots within a cluster, 
spread and location of the cluster. While due to the simplicity 
of their earlier models the results allowed certain 
discrepancies [15], in their later study [16] the authors 
succeeded in creating a much simpler model which did an 
impressive job at capturing humans’ intuitions behind 
distinguishing between random and non-random dot patterns 
(with a linear correlation of r=0.951 between the predictions 
and the human responses). However, there were still certain 
shortcomings of the model, as discussed by the authors, one 
of them being the fact that the model predicted a significant 
effect of the number of points within the dot patterns that was 
not present in the data, which could be either because humans’ 
visual systems are less sensitive to this property of the data, or 
due to overlapping of points that made counting dots difficult  
[16].   

To sum up, there is more than enough evidence to suggest 
that humans are, in fact, capable of perceiving randomness in 
the environment – in 2D patterns, specifically. This perception 
is, however, biased to some extent. Thus, a question arises: is 
it possible to coherently describe the distribution of subjective 
randomness? 

Consider a segmentation of a given 2D dot pattern into a 
grid of regions with identical area size, similar to the 
procedure found in Clarke [5]. If the dots follow a point 
process (that is, if the positions of the dots are truly-random), 
the probability of a given number of dots in the segment is 
described by the Poisson distribution. If the positions of the 
dots are not truly-random but are subjectively-random, the 
dots are more evenly scattered in the 2D plane so that they do 
not form clusters. So, the probability of a given number of dots 
in the segment should be represented by a distribution that is 
expected to be different from the Poisson distribution. 

In this study, I describe the aforementioned distribution of 
subjective randomness. I review the past research studies 
exploring subjective randomness, generate random dot 
patterns with the algorithms used for creating visual stimuli in 
their experiments, and analyze them to find potentially 
coherent statistical properties to describe the human 
perception of randomness. Based on those coherent 
properties, I suggest how a potential model characterizing the 
subjective-randomness can be developed, and discuss its 
consistency with other properties of the visual system. 



II. METHODS 

A. Algorithms for Generating 2D Dot Patterns 

The analysis utilizes three algorithms that have been 
previously used to generate visual stimuli for behavioral 
experiments. The first of these algorithms was replicated from 
scratch; the second one was provided by Dry, M. (one of the 
authors of Dry et al. [12], which used the same visual stimuli 
for their experiment) and was then translated from MATLAB 
to Python with some modifications; the third one was 
provided by Sawada, T., who was the supervisor of the author 
of the study. 

The following section provides an overview of each of 
these three algorithms. The methods for setting the parameters 
for those algorithms to generate patterns with the required 
distribution of dots will also be described. For each algorithm, 
the number of dots was varied between 49 (7×7), 100 (10×10) 
and 196 (14×14). 

The first algorithm was used to generate visual stimuli in 
Yamada et al.’s [4] study. The experiment used patterns that 
were made up of 256 black dots, arranged in a 16×16 grid, 
each with a radius of 2 pixels. The background of the display 
was a white square with two dimensions of 272 pixels. The 
location of each dot was determined using a continuous 
uniform probability density function with a mean of  and a 
range of ω in both the horizontal and vertical directions: 

𝑓(𝑋) = { 

1

𝜔
,         𝜇 −

𝜔

2
< 𝑋 < 𝜇 +

𝜔

2
 

0,            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (1) 

Here, X denotes the position of each dot within the pattern, 
 corresponds to a hypothetical dot position when the dots are 

perfectly aligned on a grid, and ω determines the level of 
physical randomness of the pattern. 

The larger the parameter ω, the more physically random 
the pattern is. For the purposes of their study, the parameter 
was varied at seven levels, ranging from 2 to 14 pixels. In a 
later study, Yamada [15] used the same visual stimuli to test 
the effect of gender and age differences on the perception of 
randomness. In general, the results indicated an almost linear 
increasing trend of estimated subjective randomness from 
value 2 to 14 (that is, the patterns with ω =14 were perceived 
as the most random by the participants). 

For the purposes of this study, three values of the 
parameter ω were used to generate the dot patterns: 2, 14 and 
26. The values 2 and 14 correspond to patterns that were rated 
as least and most random, respectively, by the participants in 
Yamada’s [15] study. The value of 26 was not tested in his 
study; however, it is used here to show that the distribution of 

dots becomes closer to that of true randomness as the value of 
ω increases. Fig. 1 shows patterns generated with three values 
of parameter ω (7; 14; 26) and three values of n (7; 10; 14). 

The second algorithm was used for generating visual 
stimuli in Preiss [13] and Dry et al. [12]. The points are 
generated based on the nearest neighbor statistic R, which 
represents the ratio of the observed distance between the 
nearest neighboring points to the expected distance between 
nearest neighboring points under the assumption of complete 
spatial randomness. 

The observed mean nearest neighbor distance for a set of 
n points is given by 

𝑟0 =
1

𝑛
∑ 𝑚𝑖𝑛{𝑢𝑖𝑗}

𝑛

𝑖≠𝑗

, (2) 

where  is the distance between the points i and j.  

The nearest neighbor distance for n points in an area A 
under complete spatial randomness is given by the probability 
density function 

𝑝(𝑑) = 2𝜋𝛿𝑑𝑒−𝜋𝛿𝑑2
, (3) 

where  is the mean number of points per unit area. 

So, the expectation of this distribution gives the mean nearest 
neighbor distance for a random process: 

𝑟𝐸 = 0.5√𝐴
𝑛⁄ . (4) 

The ratio of the observed and the expected mean nearest 
neighbor distances gives the nearest neighbor statistic: 

𝑅 =
𝑟0

𝑟𝐸

 . (5) 

Note that the closer the points are to being randomly 
distributed, the closer the values of  and  are, and so the 

closer to 1 the value of R gets. On the other hand, as points get 
more clustered,  decreases, and the value for R becomes 

closer to 0. The value of R for perfect uniformity is 2.149; 
therefore, the closer the value of R is to 2.149, the more 
regularly spaced the points are. 

As demonstrated in Preiss [13], the human perception of 
randomness in 2D dot patterns can be well captured by the 
value of the R-statistic. The relation between the rescaled 
mean ratings by the human observers and R-values was well 
described by a straight line, with an intercept close to 0 and a 
slope approaching 1 (see Fig. 2a).  

                          a)                                                b) 

Fig. 2 
  Fig. 1 



Preiss’s [13] algorithm is a composition of 3 separate 
algorithms for generating patterns with R<1, R=1, and R>1. 
As we can notice, the points in the plot can be classified into 
3 groups based on their positions on the horizontal axis: below 
1 (the five clusters on the left), around 1 (a single cluster at the 
center), and above 1 (the five clusters on the right). So, 
different algorithms were employed to generate the stimuli for 
these 3 groups. To estimate the R-value corresponding to the 
mean subjective rating of 1, the data points corresponding to 
the first two groups were neglected, and linear regression was 
performed on the points with an R-value greater than 1. The 
line of best fit indicated that the observers perceived patterns 
as the most random when the value of R was approximately 
1.17 (see Fig. 2b). 

To generate dot patterns for this study, the values of the 
mean neighbor statistic R were set to 1.00, 1.17 and 1.34, 
which were expected to generate patterns with respectively 
decreasing randomness (the value 1.00 corresponding to the 
most random dispersion of points). In Preiss’s [13] study, the 
dot density was found to have no significant effect on 
categorizing the patterns as clustered, random or regular. 
Thus, the same values of R were used to generate dot patterns 
with three different values of n (as shown in Fig. 3). 

The third algorithm used in this study for generating 
patterns was implemented to test human subjects in Sternik 
[17]. Similar to the one in Preiss [13], this algorithm also 
considers dot density using  – that is, the expected nearest 

neighbor distance under a random process (see Eq. 4). During 
the experiment, the subjects were shown 2D scatterplots and 
were asked to obtain maximally random-looking patterns by 
adjusting the visual properties of the shown patterns (the 
adjustable parameter being the minimum distance of each 
point from its nearest neighboring point). To generate patterns 

for this study, I used the subjective scores of this parameter 
within one standard deviation of the mean of the human 
responses (see Fig. 4). 

The algorithms used by both Preiss [13] and Yamada et al. 
[4] to produce dot patterns applied a technique of starting with 
a square grid as the initial placement for the points and 
“shuffling” them by adding noise to reach a certain value of 
the descriptive parameter. As a result, a grid bias could be 
observed in some of the later results, which could be more or 
less minimized by randomizing the position of the considered 
subregion. In case of Sternik’s [17] algorithm, this bias was 
not observed, since the initial pattern was randomly generated. 

B. The Distribution of Subjective Randomness 

To describe the distribution of points in a 2D dot pattern, I 
considered a segmentation procedure described in Clarke [5]. 
The 2D space was  segmented into a grid of square regions 
with identical area size and the numbers of dots in the 
individual square regions were counted. Note that if the 
positions of the dots are truly-random, the probability of a 
given number of dots in the square region is represented by a 
Poisson distribution, the shape of which changes depending 
on the area size of each region. As the size of the region 
increases, the number of dots within that region increase, and 
the Poisson distribution becomes closer to the normal 
distribution. Conversely, if the segment size decreases, there 
are fewer dots in the segment, and the Poisson distribution 
takes on a more skewed shape. If the positions of the dots are 
subjectively-random rather than truly-random, they are more 
uniformly distributed, preventing clustering. So, this tendency 
should be reflected in a distribution describing subjective 
randomness that is expected to differ from the Poisson 
distribution.  

To find a way of describing the properties of this 
distribution, I analyzed patterns that reflected the properties of 
subjective randomness and were generated using different 
algorithms. Using each one of the algorithms by Yamada et al. 
[4], Preiss [13], and Sternik [17] separately, N=5000 
subjectively-random patterns were generated. Each pattern 
was divided into a grid of segments of different sizes, with s 
segmentations per axis (2 to 10 segments per axis; so, the 
number of 2D regions varied from 4 to 100). Afterwards, the 
number of dots falling inside each subregion was counted to 
obtain a distribution characterizing the probability of a given 
number of dots within a single square region. 

Three methods of counting the number of dots per segment 
were considered: (a) for each pattern, counting the frequencies 
of the number of dots in all s2 segments and adding the results 
for all N patterns; (b) for each pattern, choosing one square 
segment close to the middle of the 2D segmented plane and 
adding the results for all N patterns; (c) for each pattern, 
choosing one square segment randomly within the pattern and 
adding the results for all N patterns (see Fig. 5). The former 
approach was the least computationally efficient (in the first 

Fig. 3 

Fig. 4                a)                                 b)                                 c) 

Fig. 5: The segmentation of a random 10×10 pattern (s=5) 



case, overall N•s2 square regions were considered, while in 
case of the second and third methods only N); other than that, 
the results for the first two were generally similar. The third 
method was chosen based on the fact that it appeared to 
smooth down the grid bias present in the algorithms of Preiss 
[13] and Yamada et al. [4]. 

The results were summarized in histograms for each 
algorithm separately, and were compared to the histograms for 
truly-random patterns on each level of s – that is, the Poisson 
distribution. Basic statistical measures (mean, median, 
variance, skewness, kurtosis) were computed for the results 
produced with each algorithm. The change in the value of each 
measure as a function of the expected mean number of dots 
per subregion was considered. The plots were compared to the 
curves of the corresponding statistical measures for the 
Poisson distribution as functions of the mean (Tab. 1). 

To fit a probability distribution to the obtained 
distributions of subjective randomness, a Poisson distribution 
can be scaled horizontally about the origin by a factor of k.  

For a probability distribution given by the density function 
P(X), the scaled probability distribution function is of the 
form: 

𝑃𝑘(𝑋) =
1

𝑘
𝑃 (

𝑋

𝑘
) . (6) 

The mean and variance of the scaled distribution are given 
by  

𝐸[𝑘𝑋] = 𝑘𝐸[𝑋], 𝑉𝑎𝑟(𝑘𝑋) = 𝑘2𝑉𝑎𝑟(𝑋). (7) 

For a Poisson distribution with parameter 𝜆, 𝜇 = 𝜎2 = 𝜆, 
where 𝜇 and 𝜎 are the mean and the standard deviation, 
respectively.  

Let M and S2 denote the estimated mean and variance of 
the distribution of subjective-randomness, respectively. Then, 
setting those to be equal to the expected mean and variance of 
the Poisson distribution, the parameter 𝜆 of the Poisson 
distribution and the scaling factor k can be uniquely 
determined from the following equations: 

𝑘𝜆 = 𝑀, 𝑘2𝜆 = 𝑆2. (8) 

Thus, the distribution will be of the form: 

𝑑(𝑋;  𝑘, 𝜆) =
1

𝑘

𝜆
𝑥
𝑘𝑒−𝜆

(
𝑥
𝑘

) !
, (9) 

The density function can be generalized to the set of all 
non-negative real numbers by using the identity 𝛤(𝑛 + 1) =

𝑛!, where 𝛤(𝑥) is the Gamma function, and n is any non-
negative integer. So, the PDF of the distribution is given by 

𝑑(𝑋;  𝑘, 𝜆) =
1

𝑘

𝜆
𝑥
𝑘𝑒−𝜆

Γ (
𝑥
𝑘

+ 1)
, (10) 

𝑘 =
𝑆2

𝑀
, 𝜆 =

𝑀2

𝑆2
. (11) 

 

C. The Pyramid Model 

How does the shape of the distribution change when the 
segment size changes? To answer this question, the concept of 
the image pyramid can be considered. 

When an image is scaled to different sizes and its versions 
at different resolutions are “stacked” on one another in 
decreasing order, they constitute the layers of the square-base 
pyramid. The bottom layer represents the highest-resolution 
version of the image and the consequent layers represent 
higher stages of visual processing [18].   

The images are represented on multiple levels of scale and 
resolution by the human visual system [19, 18]. It has been 
shown that the properties of the pyramid model capture human 
performance in cognitive tasks based on visual perception. 
Pyramid algorithms have been used to model human 
performance in problem solving for TSP, E-TSP, 15-puzzle 
and other optimization problems [20]. 

The assumtion was that the distribution for subjectively-
randomness can be also formulated by making use of the 
pyramid model. The pyramid model makes the assumption of 
the same process applied across the levels. Changing the size 
of the subregion is like accessing different levels of the image 
pyramid of the 2D space. The dots in subjectively-random 2D 
patterns evenly scattered than in truly-random random 
patterns, which can be captured by the scale constant of the 
image pyramid. 

III. RESULTS & DISCUSSION 

Consider the plots of the statistical measures (vertical axis) 
as functions of the expected theoretical number of dots per 
subregion under segmentations of size 𝑠 = 2,3, … 10 

(horizontal axis). Note that as s increases, the size of a unit 
subregion decreases, and is calculated by 𝑛2/𝑠2 (where 𝑛2 is 
the total number of dots within the image). 

The mean and variance of the Poisson distribution are 
equal to the expected value λ. Therefore, the curves of the 
theoretical mean and variance against the expected value are 
represented by straight lines with slope 1. The skewness and 
kurtosis are both represented with decreasing functions (see 
Tab. 1). Clearly, as the size of the region increases, the number 
of dots within that region increases, and the shape of the 
Poisson distribution becomes closer to the bell-shape of the 
normal distribution – that is, the skewness and the kurtosis 
(describing the properties of symmetry and “tailedness”) 
decrease, getting closer to 0. 

The resulting plots of the statistical properties of the 
distributions, as compared to the properties of the Poisson 
distribution, exhibited some expected trends. The most 
noteworthy consistency across the three algorithms was that 
the variance obtained from any of the algorithms was 

Tab. 1 



markedly lower than the variance obtained from the Poisson 
process under the same procedure (see Fig. 6). 

For the scatter plots generated with Yamada’s algorithm, 
the variance increases with the increase in the parameter ω 
(from 7, through 14, to 26) which was expected (as a larger 
value of the parameter creates patterns increasingly more 
“shuffled” from the initial grid placement). However, the 
variance for both 14 and 26 remain significantly below the 
curve of the Poisson’s variance. The variance from Preiss’ 
stimuli also behaves similarly. As noted earlier, the algorithm 
applied 3 branches of generating dot patterns (R<1, R=1 and 
R>1), so the curve corresponding to the parameter R=1.00 
(created by random point generation) simply coincides with 
the estimated variance of the true-random patterns. As the R-
statistic gets further from the value 1, the dots become more 
evenly spaced. So, the curve for the parameter R=1.17, which 
was estimated in his experiment to create the most 
subjectively-random images, is closer to the theoretical 
Poisson curve than that for R=1.34.  The results for Sternik’s 
algorithm are also consistent across the three values of n: the 
curves get closer to the theoretical variance from the values of 
the parameter one standard deviation below the estimated 
mean (r=1.21), through the estimated mean (r=0.87), to one 
standard deviation above the estimated mean (r=0.57) of the 
human responses. Fig. 7 shows the comparison of the three 
main parameters for each algorithm (estimated by their 
respective experiments to produce the most subjectively-
random dot images) by estimated variance, across three values 
of n.  

As can be noted, the variance is consistently below the 
curve of the theoretical Poisson variance, which increases 
linearly as a function of the expected number of dots. This 
indicates that the distribution of subjective-randomness is 
different from the Poisson distribution, which assumes 
independence of individual events from one another. So, the 
processes that generate patterns with visual properties 
reflecting maximal subjective randomness do not create 
independent points in the 2D space. 

On the other hand, the standard deviation of the Poisson 

distribution is not linear, as it is represented by 𝜆1/2, where 𝜆 
is the expected number of dots in a region. Since 𝜆 = 𝑛2/𝑠2, 
when s=1 (i.e., no segmentation is applied), the expected 
number of dots within the segment is equal to the total number 
of dots within the whole pattern (𝜆 = 𝑛2). As 𝑛 is fixed (in 
this case – 7, 10 and 14), the measured variance in this case 
will be equal to 0, and so will the standard deviation. As shown 
in Fig. 8, the measured standard deviation of the distribution 
of dots from truly-random patterns shows a discrepancy from 
Poisson (SD=0 for 𝜆 = 𝑛2), which can be attributed to the 
effect of segmentation. Therefore, the standard deviation as a 
function of the expected number of dots cannot be expressed 
as a linear function passing through the origin, which deviates 
from the prediction of the pyramid model. The theoretical SD 
of the pyramid model should be linear (with an intercept of 0), 
while the graphs for the truly-random patterns show a clear 
convex-upward trend. This non-linear trend was not tested in 
the past empirical studies, as they did not consider the effect 
of segmentation. 

Therefore, some modifications are needed both for the 
Poisson distribution and the pyramid model, in order to be able 
to use them for modeling the distribution of subjective 
randomness and the change of that distribution against the 
change of the subregion area size. Using a scaled Poisson 
distribution could be one option, as the results of the fitted 
histograms for the three maximal-subjective-randomness 
parameters of the algorithms suggested that it could be a 
potentially working method. Further analysis and comparison 
of the scaled distributions across different algorithms and 
parameters could provide deeper insight into a coherent 
distribution modeling subjective randomness. 
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