Physics Informed Spatiotemporal Deep Learning

Author: Aleksandr Mkrtchyan
BS in Data Science

AUA AUA

Abstract—This capstone thesis presents a comprehensive in-
vestigation of physics-informed spatiotemporal deep learning, a
novel approach for solving nonlinear partial differential equa-
tions (PDEs) with the aid of deep learning techniques. By
leveraging the principles of physics-based deep learning, this
research aims to provide accurate, data-driven solutions and
data-driven discoveries to complex PDE problems. In particular,
we discuss Burgers and the complex Ginsburg-Landau equations
in the context of physics-informed neural networks.

Index Terms—Keywords: physics-informed neural networks,
spatiotemporal deep learning, nonlinear partial differential equa-
tions, physics-based deep learning

I. INTRODUCTION

The surge in accessible data and computational capabilities
has led to remarkable progress in machine learning and data
analysis across diverse scientific domains, such as image
recognition, cognitive science, and genomics. Nonetheless,
data collection costs can be daunting when examining complex
physical, biological, or engineering systems, often leading
to insufficient information. In these cases, most cutting-edge
machine learning methods, including deep, convolutional, and
recurrent neural networks, are not robust and lack convergence
guarantees.

It might seem improbable to train a deep learning algorithm
to precisely identify a nonlinear map from high-dimensional
input and output data pairs with only a few examples. Yet,
prior knowledge, like governing physical laws, established
rules, or domain expertise, can serve as a regularization
agent to restrict the solution space. Integrating this structured
information into a learning algorithm augments the data’s
informational value, enabling the algorithm to swiftly identify
the right solution and generalize effectively, even with limited
training examples.

Recent research [1]-[3] has highlighted the possibility of
using structured prior information to develop data-efficient,
physics-informed learning machines. These studies employed
Gaussian process regression [4] to create functional represen-
tations customized for particular linear operators, successfully
deducing solutions and offering uncertainty estimates for sev-
eral prototype problems in mathematical physics. Although
extensions to nonlinear problems [5] were proposed in subse-
quent studies, they encountered limitations: the necessity to lo-
cally linearize nonlinear terms in time and the Bayesian nature
of Gaussian process regression demanding prior assumptions
that could restrict the model’s representational capacity and
cause robustness/brittleness concerns, especially in nonlinear
problems.

Author: Jon Hakobyan
BS in Data Science

Supervisor: Aleksandr Hayrapetyan
Yerevan State University

II. METHODOLOGY

In this study, we adopt an alternative approach by utilizing
deep neural networks, capitalizing on their renowned ability
as universal function approximators [6]. This allows us to
directly address nonlinear problems without the need for
prior assumptions, linearization, or local time-stepping. We
take advantage of recent advances in automatic differentiation
[7] to differentiate neural networks with respect to their
input coordinates and model parameters, resulting in physics-
informed neural networks (PINNs). These networks adhere
to any symmetries, invariances, or conservation principles
derived from the physical laws governing the observed data,
as modeled by general time-dependent and nonlinear par-
tial differential equations (PDEs). This straightforward yet
effective framework enables us to address a wide array of
problems in computational science and paves the way for
potentially groundbreaking technology in the development of
new data-efficient and physics-informed learning machines,
novel numerical solvers for PDEs, and innovative data-driven
approaches for model inversion and system identification.

The overarching goal of this work is to establish the
groundwork for a new paradigm in modeling and computation
that combines deep learning with long-established develop-
ments in mathematical physics. Our manuscript is divided
into two parts, focusing on two key problem classes: data-
driven solutions and data-driven discovery of PDEs. All code
and data sets accompanying this manuscript can be found
on GitHub. We employ relatively simple deep feed-forward
neural network architectures with hyperbolic tangent activation
functions and no additional regularization. Each numerical
example in the manuscript includes a detailed discussion of
the used neural network architecture and training process (e.g.,
optimizer, learning rates, etc.). We consider parametrized and
nonlinear PDEs of the general form

ug+ Nu; N\ =0, z € Q, t €[0,7T],

where u(t,z) denotes the latent (hidden) solution, N[A]
is a nonlinear operator parametrized by A, and €2 is a subset
of RP. This setup encapsulates a wide range of problems in
mathematical physics, including conservation laws, diffusion
processes, advection-diffusion-reaction systems, and kinetic
equations. For instance, the one-dimensional Burgers equation
[8] serves as a motivating example, where

Nlu, A] = Muty — Agugz, and X = (A, A2).

Here, the subscripts denote partial differentiation in either
time or space. Given noisy measurements of the system, we
aim to address two distinct problems. The first is inference,
filtering and smoothing, or data-driven solutions of PDEs,
which asks: given fixed model parameters A\, what can be
said about the unknown hidden state u(t,z) of the system?
The second problem is learning, system identification, or
data-driven discovery of PDEs, which seeks to determine the
parameters that best describe the observed data.

III. RESULTS AND DISCUSSIONS
A. Burgers Equation’s Implementation Through TenserFlow

Utilizing the Chebfun package in conjunction with tradi-
tional spectral techniques, a high-resolution dataset was de-
rived from the Burgers equation. Commencing with an initial
condition h(0, z) = 2sech(x) and adopting periodic boundary
constraints h(t,—5) = h(t,5) and hy(t, —5) = h,(t,5), the
PDE was integrated until ¢ = 7. A spectral Fourier dis-
cretization consisting of 256 modes was employed, alongside
a fourth-order explicit Runge-Kutta temporal integrator with
a time-step of 0t = 7 * 10—, ensuring precise and accurate
results.

Model performance

floss u loss

Loss
Loss
g & % &

. A 1. J

13 1000 2000 3000 4000 5000 6000
Number of iterations
f loss (starting from 400)

1000 2000 3000 4000 5000 6000
Number of terations
u loss (starting from 400)

°

Loss
Loss
8 & B

1 L. l

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Number of iterations Number of iterations
Lambda 1 history Lambda 2 history

Lambda 1
Lambda 2
s & 8

1000 2000 3000 4000 5000 6000
Number of iterations

o 1000 2000 3000 4000 5000 6000
Number of iterations

°

Fig. 1. Model performance: Noiseless data.

Model performance for the noised data

floss u loss

Loss
Loss
s o o o

L ll lln \

0 2000 4000 6000 8000 10000
Number of iterations
f loss (starting from 400)

°

2000 4000 6000 8000 10000
Number of iterations
u loss (starting from 400)

§o2 I LTS

.

|

0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Number of iterations Number of iterations
Lambda 1 history Lambda 2 history

000325
000300
E 0.00275

000250

2000 4000 6000 8000 10000
Number of iterations

o 2000 4000 6000 8000 10000
Number of iterations

°

Fig. 2. Model performance: Noised data.

B. Burgers Equation’s Implementation Through Pytorch

Model performance

floss u loss

1000 2000 3000 4000 5000 6000 © 100 2000 3000 4000 5000 6000
Number of iterations Number of iterations

floss (starting from 400) u loss (starting from 400)

00020 0003

0.0015
0.002

8 00w H
0.0005 0001
00000 0000
oo 200 0 w0 om0 om0 W0 20 30 a0 om0 a0
Number of iterations Number of iterations
Lambda 1 history Lambda 2 history
Lo
. . 000
< o p
E E
3 oo 5 o0
s oc02
T w w40 s eoo0 3w w0 w0 a0 om0 oo
Number of eratons Number oferatons
Fig. 3. Model performance: Noiseless data.
Model performance for the noised data
floss u loss
0s
003
03
, 002 .
H o2
001 o
000 S 00 L
T 200 400 6000 000 10600 12000 14600 T 200 00 000 000 10600 12000 14600

Number of iterations
u loss (starting from 400)

Number of iterations
f loss (starting from 400)

Loss
Loss

001
0.00 e 0.00

4000 6000 8000 10000 12000 14000
Number of iterations
Lambda 2 history

0 2000 4000 6000 8000 10000 12000 14000 c 2000
Number of terations
Lambda 1 history

00040
3 o00s
3

£ 00030

0.0025

0 2000 4000 6000 8000 10000 12000 14000 1
Number of iterations

2000 4000 6000 8000 10000 12000 14000
Number of iterations

Fig. 4. Model performance: Noised data.

C. Similarities and Differences

Analyzing the outcomes, it becomes evident that the Py-
Torch implementation of Physics-Informed Neural Networks
(PINNs) exhibits greater adaptability and superiority com-
pared to its TensorFlow counterpart. Moreover, the PyTorch
version demonstrates enhanced performance characteristics.
Nonetheless, TensorFlow’s training duration is considerably
lengthened, albeit with reduced memory consumption. Py-
Torch facilitates rapid prototyping, while TensorFlow presents
a more viable alternative for incorporating bespoke features
within the neural network architecture. Notably, PyTorch now
also supports this functionality. The PyTorch-based solution
exhibits improved stability. In the PyTorch scenario, we
employed the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) optimizer for minimizing the loss function,
while the Adaptive Moment Estimation (ADAM) algorithm
was utilized for optimizing the state loss. Conversely, Tensor-
Flow solely relied on the ADAM algorithm for both purposes,
as its LBFGS implementation resulted in memory overflow.
Consequently, the PyTorch implementation emerges as the
superior performer.

u(t, x) in the different times steps

t=0.10 t=0.20 t=0.40

1.00
0.75
0.50

1.00
0.75
0.50

u(t, x)

L !
mroooooo0or
cunNONOSO
Sa3n8ndas

u(t, x)

L
~ooooo
SunNoN
Sadunen

u(t, x)

L
2 ooooo
SunNOoN
Sadunan

-1.0 =05 0.0 05 1.
X

=)

-1.0 =05 0.0 05 1.0 -1.0 =05 0.0 05 1.0
X X

—— Exact --- Prediction

t=0.60

u(t, x)
ol
ocoooooo
JumoN TS
GEr8nda
u(t, x)
ol
Soooooot
JumoN TS
G338 unda
n
o
®
u(t, x)
ol
coooooo
ShnoNng Y
a8 nda
n
o
©o

-1.0 =05 0.0 05 1. -1.0 =05 0.0 05 1.0 -1.0 -0.5 0.0 05 1.0
X X X

=)

Fig. 5. Latent Solution on Tensorflow.

u(t, x) in the different times steps

t=0.10 t=0.20 t=0.40

1.00
0.75
0.50

1.00
0.75
0.50

u(t, x)
L !
mooooooor
cSuNoNnwO
Sa3nh3ndas
u(t, x)
L
2 ooooo
ocSunNnon
Sa3nhan,
u(t, x)
L
2 ooooo
ocSunnoN
Sa3nhan

-1.0 =05 0.0 05 1.0 -1.0 =05 0.0 05 1.0 -1.0 =05 0.0 05 1.0
X X X

—— Exact --- Prediction

t=0.60
1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 s 0.00
-0.25 -0.25
-0.50 —-0.50
-0.75 -0.75
-1.00 -1.00

1.00
0.75
0.50
0.25
s 0.00
-0.25
-0.50
-0.75
-1.00

u(t, x)

u(t, x)
N\ [T
4
©

AN
o
o
u(t, x)

-1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 10
X X X

Fig. 6. Latent Solution on PyTorch.

Having the same number of iterations performed and the
same neural network layers, the results of PyTorch are con-
siderably higher compared to TenserFlow, which can be seen
from the lambda parameters of the equations (Fig. 7, 8).

D. The Complex Ginzburg-Landau Equation-Based PINN

The PINN, which incorporates the complex Ginsburg-
Landau equation as its loss function, is realized through the

[Correct PDE I UL+ U U X - 0.0931831 u {xx} = 8
| Identified PDE (clean data) | ut + 8.95253 u ux - 0. U XK =
| ldentified PDE (1% noise) | Ut + @.95353 U u x - G.8B57336 U sk =B |

Fig. 7. Tensorflow: Initial and Predicted Values of .

[Correct PDE |
| Tdentified PDE (clean data) |
| Identified PDE (1% noise) |

Ut +uux-8,8031831 u {xx} = @
ut + 0. Uu X - B.6031547 U xx = @
Ut + B.99898 uu x - B.0031542 uxx = @

Fig. 8. PyTorch: Initial and Predicted Values of A.

utilization of the PyTorch framework. A moderately shallow,
fully connected neural network is employed to approximate the
state function, capitalizing on the universal approximation the-
orem. The entire neural network leverages automatic differen-
tiation for the construction of the loss function. To optimize the
state loss function, the Adaptive Moment Estimation (ADAM)
algorithm is utilized, while the Learning with LION, which
is an evolved sign momentum optimization technique [9], is
employed for the optimization of the custom loss function.
Although several optimizers were evaluated, some, such as
ADAM, exhibited suboptimal performance, while others, like
LBFGS, resulted in memory overflow, exceeding the capacity
of the computational resources. In the LION optimization
process, a learning rate of 1 and a weight decay of 1e —4 were
applied; the latter is a regularization technique that helps miti-
gate overfitting by penalizing large weights. Our computational
setup permitted 10,000 iterations for data-driven discovery
related to the complex Ginzburg-Landau equation, attempting
to discern the p parameter (the coefficient preceding A in the
equation, typically 1), which signifies the linear growth rate of
the system. Although the results were not entirely satisfactory,
this endeavor marks the beginning of a promising avenue,
and we anticipate that incorporating suitable regularization
techniques will yield improved outcomes.

The main equation of Ginzburg-Landau equation is given
by:

A=A+ (1+ib)AA — (1+ic)|A*A

where A is a complex function reliant on the (scaled) time
t and spatial coordinates T (typically in lower dimensions
D =1 or 2), with real parameters b and c representing linear
and nonlinear dispersion. This equation appears in physics,
particularly as a “modulation,” “envelope,” or “amplitude”
equation. It provides a streamlined, universal depiction of
“weakly nonlinear” spatio-temporal occurrences in expansive
(?) continuous media with diverse linear dispersion charac-
teristics (elaborated on later) and which stay invariant during
a global gauge transformation (multiplying A by exp(i®)).
This symmetry usually arises when A embodies the (slowly
changing) amplitude of a phenomenon that is periodic in
a minimum of one variable (space and/or time) due to the
system’s translational invariance [10].

The above equation can be reduced to:

A = pA+ AA—|APA

which is also known as the "Complex Nonlinear Diffusion
Equation,” making a connection to the Nonlinear Schrodinger
Equation. Instances of such instability include Rayleigh-
Bénard convection in both simple and complex fluids, Taylor-
Couette flow, electroconvection in liquid crystals, among oth-
ers. The related equation, developed by Newell and Whitehead
(1969) and Segel (1969), was the inaugural amplitude equation
to include spatial degrees of freedom. Nonetheless, it is strictly
applicable to scenarios with almost parallel rolls, posing a
considerable constraint in isotropic systems [10].

30

20

10

-30

—05 00 0.5 1.0 15 20 25 3.0 35

Fig. 9. Original values.

—0.5
0.025505
0.0
0.025500
0.5
0.025495
1.0
0.025490
15
0.025485
2.0
0.025480
2.5
0.025475
3.0
0.025470
3.5 T T T T T T 1
5 10 15 20 25 30 35

T T
-0.5 0.0 0.

Fig. 10. Predicted values.

It is obvious from Figures 9 and 10 that the model does
not work well, as it is new in the sphere. It was trained on a
NVIDIA’s GTX 1050 TI GPU

Figure 11 shows the losses of Ginzburg-Landau equation,
and the next one is the normalized version of the losses done
through the following formula:

(Xmaw - Xmin) '
IV. CONCLUSION

Xno’r‘m =

In conclusion, this study demonstrates the potential of
Physics-Informed Neural Networks (PINNss) as a powerful tool
for addressing nonlinear problems in computational science.
By integrating structured prior information, PINNs are capable
of efficiently learning from limited data and adhering to

Loss

Model performance

floss u loss total loss

350

300

200

150

100

0 2000 4000 6000 8000 10000 0
Number of iterations

2000 4000 6000 8000 10000
Number of iterations

2000 4000 6000 8000 10000
Number of iterations

myu floss_ myu

Loss

0 2000 4000 6000 8000 10000 o
Number of iterations

2000 4000 6000 8000 10000 o
Number of iterations

2000 4000 6000 8000 10000
Number of iterations

Fig. 11. Losses by Ginzburg-Landau Equation.

" Model performance (normalized vaues)
total loss norm W loss norm

Namber of teraions amir o erations

Fig. 12. Normalized Losses by Ginzburg-Landau Equation.

underlying physical laws. Comparing the implementations of
PINNs in TensorFlow and PyTorch, it becomes evident that
the PyTorch version offers greater adaptability, superior per-
formance, and improved stability. While TensorFlow may be
more suitable for incorporating custom features within neural
network architectures, PyTorch facilitates rapid prototyping
and emerges as the preferred choice for PINNs implemen-
tation. This work lays the foundation for a new paradigm
in modeling and computation, combining deep learning with
well-established developments in mathematical physics, open-
ing up possibilities for novel numerical solvers, data-driven
approaches, and advancements in data-efficient learning ma-
chines.

REFERENCES

[1] M. Raissi, P. Perdikaris, G.E. Karniadakis, Inferring solutions of differ-
ential equations using noisy multi-fidelity data, J. Comput. Phys. 335
(2017) 736-746.

[2] M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear
differential equations using Gaussian processes, J. Comput. Phys. 348
(2017) 683-693.

[3] H. Owhadi, Bayesian numerical homogenization, Multiscale Model.
Simul. 13 (2015) 812-828

[4] C.E. Rasmussen, C.K. Williams, Gaussian Processes for Machine Learn-
ing, vol. 1, MIT Press, Cambridge, 2006

[5] H. Owhadi, C. Scovel, T. Sullivan, et al., Brittleness of Bayesian
inference under finite information in a continuous world, Electron. J.
Stat. 9 (2015) 1-79.

[6] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks
are universal approximators, Neural Netw. 2 (1989) 359-366.

[71 A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic
differentiation in machine learning: a survey, 2015, arXiv:1502.05767

[8] C. Basdevant, M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani, R.
Peyret, P. Orlandi, A. Patera, Spectral and finite difference solutions of
the Burgers equation, Comput. Fluids 14 (1986) 23-41.

[9] Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu, Y., Pham, H.,
Dong, X., Luong, T., Hsieh, C.J. and Lu, Y., Le, Q. V. (2023). Symbolic
discovery of optimization algorithms. arXiv preprint arXiv:2302.06675.

[10] Aranson, I. S., Kramer, L. (2002). The world of the complex Ginzburg-
Landau equation. Reviews of modern physics, 74(1), 9

