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Abstract—Being the third most diagnosed and second
most deadly cancer worldwide, colorectal cancer is a
highly complex, multigenic disease that has very high
inter-patient variability in terms of the genetics of the
tumor. This raises the need for developing a personal-
ized treatment for CRC patients for better efficacy and
reduced toxicity. Molecular subtyping of the disease is
a way to define biological subgroups for which targeted
treatment can be optimized. Our research aimed to test
different Machine Learning and Deep Learning models
that combined theoretically and practically tested state-of-
the-art concepts to obtain biologically meaningful clusters
from somatic mutations and copy number alterations as
CRC patient subgroups. Four different methods with dif-
ferent types of inputs were tested, Spectrum, xGeneModel,
Kmeans clustering, and Deep Embedded Clustering. Our
results proved the most efficient way of obtaining these
subgroups to be a Deep Learning clustering model (DEC)
applied to prior biologically enriched data using Biologi-
cal Process genesets from Gene Ontology. The obtained
clusters were treated as labels to build classifiers as a
predictive tool for incoming patient records, from which
Logistic Regression performed the best. Survival Analysis
showed that the obtained clusters were not distinct in
terms of overall survival patterns. However, we brought
forward the hypothesis that these can be significantly
different considering specific drug treatments, for which
we did not have sufficient data to check the hypothesis.
The code and material of the method are available at:
https : //github.com/susieavagyan/capstone − cancer −
subtyping

Keywords—cancer, colorectal, subtyping, clustering, per-
sonalized medicine

INTRODUCTION

Worldwide, colorectal cancer is the third most diag-
nosed cancer and the second most deadly cancer. An esti-
mated 1,9 million people were diagnosed with colorectal

cancer in 2020, and around 1 million died. Colorectal
cancer (CRC) is highly heterogeneous at the genomic
and transcriptomic levels. Two important features of
CRC are high inter-patient variability and high spatial
heterogeneity. These characteristics influence the molec-
ular characterization of tumor tissue, hence challenging
the ”one-fits-all” approach of current medicine in terms
of disease treatment and progression.

Personalized(precision) medicine uses patient-specific
genetic or other biomarker information to make treat-
ment decisions that can make patient care more efficient.
Its applications in cancer treatment have been shifting
the organ-centric generalized treatment choices towards a
more molecular level, personalized analysis, and decision
making. So, to obtain subgroups of cancer cases that are
molecularly distinct and can be experimentally optimized
for more precise, efficient, and less toxic treatment,
molecular subtyping using various types of data (somatic
mutations of the tumor, gene expression changes in
cancer cells, molecular pathway disruptions) can be
performed. With the development and improvement of
sequencing and gene expression measuring techniques,
the data to perform this task have significantly increased,
providing more predictive capacity for any proposed
methods to perform subtyping. However, there is no
highly optimized algorithm or method to perform this
task just yet, and much research to define new methods
using different types of data is ongoing.

Subtyping using somatic mutations has recently
proven to have much potential in terms of this task.
Somatic mutations are stable and have critical functions
in cancer development and progression (Vural et al.,
2016). Moreover, investigating somatic mutation profiles
can aid in cancer diagnosis and treatment due to the
vast number of clinical guidelines based on single gene
mutation (Kuijjer et al., 2018). This project aims to use
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Machine Learning and Deep Learning methods to obtain
molecular subtypes/clusters of CRC, classify new patient
data, and evaluate the performance of each proposed
model in terms of biological meaning and clinical out-
come.

However, as somatic mutational data is very sparse
and high dimensional, the common clustering algorithms
often lead to biologically meaningless clusters. Hence
with this paper, we also aim to prove the hypothesis that
using somatic mutations as a baseline and performing
an additional data enrichment/stratification step, which
aims to integrate more biological meaning into the data
and reduce feature space size, will provide better results.

We then apply four different clustering methods: Spec-
trum, xGeneModel (Zhang et al., 2018) with driver gene
focus, Kmeans clustering with enriched data, and Deep
Embedded Clustering (Rohani et al., 2020) with enriched
data. For the classification tasks, a number of classifica-
tion algorithms, such as Random Forest, Logistic Re-
gression, Multi-Layered Perceptron, etc., are used. The
obtained clusters are further analyzed using biological
insights and clinical data about patients. Specifically,
Kaplan Meier Survival Analysis is done for validation
of cluster distinctiveness in terms of disease progression
and survival.

MATERIALS AND METHODS

A. Dataset

The dataset was obtained from the public database
cBioPortal, from a recent study MSK-MET 2O21
(Memorial Sloan Kettering - Metastatic Events and
Tropisms 2021) study (Nguyen et al., 2022). It contains
tumor genomic and clinical outcome data from a pan-
cancer cohort of over 25,000 patients with metastatic
diseases, including information about 50 different pri-
mary and metastatic cancer types. This paper is going to
focus on colon and rectal cancer, which includes 3093
patients from the dataset, from which 2073 have primary
and 1020 metastatic cancers (Fig 1). For model building,
primary cancer data is used.

Exploratory data analysis (EDA) showed that our data
is very sparse (Fig2,3). This means there are many
patients with very few mutations, which is typical for
cancer mutation profiles. There are also numerous pa-
tients with hypermutated tumors (n>15).

Fig. 1. Primary vs Metastatic cancer patients count

Fig. 2. Distribution of patients based on mutation count.
Most patients have 5-8 mutations

Fig. 3. Fraction of Genome Altered is the percentage of the
genome that has been affected by copy number gains or losses. Total
Mutations refers to the number of mutations that are found in the
tumor genomes
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B. Preprocessing

After obtaining relevant genomic (including mutations
and copy number variations (cnv) and clinical data,
preprocessing of the data was performed to

• remove nonrelevant for the task types of mutations,
such as silent (no effect) and splice site mutations

• remove cnv’s that cause loss of heterozygosity
• map gene names to universal HGNC nomenclature
• transform dataframes to one-hot-encoding for each

patient-gene pair

As the model was going to perform clustering, then
classification on a single data frame, we needed to com-
bine the mutational and cnv data with some biological
logic behind it. Hence, the data were combined by
counting cnv data as mutations in case

• cnv is a deletion in a tumor suppressor gene
• cnv is an amplification of an oncogene

EDA of the patient clinical information showed gen-
eral patterns of our patient sample. In terms of gender,
our dataset is balanced (Fig.4), white race group is over-
represented (Fig.5), age is normally distributed within
the range <30 - 90. (Fig.6).

Fig. 4. Distribution of patients by sex

Fig. 5. Distribution of patients by race

Fig. 6. Age of patients at the time of genetic sequencing of tumors
(data collection

MODELS

Obtaining the processed data, we defined two major
steps that it needed to go through - clustering and
classification.

C. Clustering

The clustering step is required for cancer case subtyp-
ing, which can be further used for identifying descriptive
genetic signatures for patient groups and use this for
developing personalized treatment. Cancer subtyping on
somatic mutations has great potential. However, it poses
a couple of challenges. Firstly, the mutational data is
very sparse. As our EDA also showed, the vast majority
of patients have profiles with 5-8 mutations. This data
is difficult to cluster, just considering the mathematical
operations that happen under the hood. Secondly, the
genetic variance is very big. This means even if each
patient has very few mutations, those mutations happen
in a wide range of different genes and are very different
from person to person. This is especially an issue for col-
orectal cancer; as compared to other cancers like breast
cancers, CRC has high spatial heterogeneity and high
interpatient variability (Molinari et al., 2018) Having
these in mind, we need to implement methods that are
optimized in terms of different aspects: dealing with data
sparsity, integrating biological meaning, optimizing local
density-awareness, etc.

We therefore propose and compare four different
clustering methods: Spectrum, xGeneModel (Zhang et
al., 2018) with driver gene focus, Kmeans clustering
with enriched data, and Deep Embedded Clustering
(Rohani et al., 2020) with enriched data. For all methods,
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clustering is done with k = 5 clusters, which was chosen
arbitrarily.

1) Spectrum: The first method, Spectrum, uses pro-
cessed one-hot encoded mutation matrix and applies
a self-tuning density-aware kernel that enhances the
similarity between points that share common nearest
neighbors. It uses a tensor product graph data inte-
gration and diffusion procedure to reduce noise and
reveal underlying structures. The algorithm basically
clusters eigenvectors derived from a matrix representing
the data’s graph. The adaptive density-aware kernel,
which calculates the similarity matrix between samples
is defined as follows:

Aij = exp(
−d2(sisj)

σiσj(CNN(sisj) + 1)
),

where dij denotes the Euclidean distance between
points si and sj , σ is a local scaling parameter, CNN
denotes the number of points in the intersection between
the two sets of nearest neighbors of points si and sj .
The kernel increases Aij when si and sj share more
neighbors and therefore adapts to the data’s local density.
Two additional parameters, P and S, are passed on to
the algorithm to define the size of the kernel: P is the
number of nearest neighbors to use when calculating
local sigma, and S is the number of nearest neighbors to
use when calculating common nearest neighbors. (John
et al., 2020). We ran the algorithm with P = 4 and S
= 6. These numbers were chosen empirically judging
by runtime and similarity matrix values (higher values
will prefer global structures, while lower values local
structures).

2) xGeneModel: In this method, the functional sim-
ilarities of the cancer driver genes, which are genes in
which acquired mutations are causally linked to cancer
progression, are integrated with the mutational to cal-
culate the genetic distance between tumors. Two pre-
calculated matrices, FSM and WM, are used to perform
clustering via integrating biological information about
driver genes. FSM is the functional similarity matrix for
all the putative cancer driver genes, which are taken
into account in the analysis. Functional similarity is
defined as the correlation between two genes in terms of
the correlation of the biological process and molecular
function terms (from Gene Ontology database)(Harris et
al., 2004)) that those genes are involved in. WM is the
weighted between-gene similarity matrix, where weights

are the confidence scores of the putative cancer driver
genes being real driver genes as supported by literature.
Given these two matrices, the mutation similarity matrix
is calculated element by element for the tumors in a
cohort. This is then passed on to Ward’s hierarchical
clustering analysis, which provides cluster assignments.

3) Data Enrichment: Keeping in mind sparsity and
dimensions of somatic mutation and cnv data matrices,
we move on to perform biological enrichment of data.
The stratification algorithm we propose implies func-
tional scoring of the mutational profile (set of mutated
genes per patient) as follows: a set of mutated genes
is matched to different genesets of various biological
context, such as T cell co-stimulation, regulation of
cell cycle, etc. and geneset Z-score (GSZ) is estimated
for each patient and functional gene set. The GSZ-
score calculates the fraction of mutated genes of a
patient that match to a given functional set minus the
fraction of mutated genes in the set averaged over all
patients and divided by the overall standard deviation.
The mutational GSZ-score of a functional set is con-
sequently high/positive for patients with mutations in
the functional set exceeding its average. The output of
this analysis returns for each patient a vector of GSZ-
scores where each element refers to one functional set.
In our application, we used functional sets from the
gene ontology category biological process (GO BP). The
method was implemented using its application in the R-
package oposSOM (Loeffler-Wirth, 2015).

This step helps do reduce data sparsity as the resulting
functionally enriched matrix contains correlation scores
for every sample-geneset pair, as well as reduces the
feature space from 459 genes to 84 genesets.

The above-mentioned clustering methods were taking
as input patient-gene boolean matrix indicating mutation
existence for a given patient in a given gene. The xGen-
eModel was integrating functional information within
its algorithm. The following two methods use prior
biologically stratified input.

4) KMeans Clustering on enriched data: This is a
simple integration of KMeans Clustering (in Python’s
Scikit-Learn library (Pedregosa et al, 2011)) on the
enriched data.

5) Deep Embedded Clustering on enriched data:
DEC is a method that simultaneously learns feature rep-
resentations and cluster assignments using deep neural
networks. It learns a mapping from the data space to

4



a lower-dimensional feature space in which it iteratively
optimizes a clustering objective (Xie et al., 2016). Given
n tumors with the feature vectors in space X with m
dimension that should be grouped to k clusters with
centers µi, instead of clustering the data in the initial
space X, the data are mapped to the latent feature space
Z. This is done by a nonlinear function

fθ : X → Z,

where θ is a set of trainable parameters. A deep neural
network can be used to implement f , because of its
theoretical function approximation characteristics and
the capabilities in learning features (Hornik, 1991). As
said, DEC is an iterative method. In each iteration, the
cluster centers µi, as well as parameters θ, are updated.
The algorithm consists of two parts:

• Parameter initialization using a stacked auto-
encoder (SAE) (for θ) (Suk et al., 2015) and k-
means algorithm (for centroids).

• Parameter optimization that calculates the auxiliary
target distribution function and updates the param-
eters using minimization of the Kullback–Leibler
divergence (KLD) (Rohani et al., 2020).

These two steps are iterated until the convergence. The
convergence criterion is satisfied when the assigned clus-
ters to samples in two subsequent iterations are changed
in < 0.001 portion of data.

D. Classification

After obtaining clusters, each patient was assigned
a label with its cluster assignment and passed on to
the classification step. Here, data is split to train and
test dataset, and applicable classifiers from a set of
10 (9 traditional ML classifiers from Python’s Scikit-
learn library and 1 custom DL classifier) are fit to the
train data. These are KNN (K Nearest Neighbors), LDA
(Linear Discriminant Analysis), GNB (Gaussian Naive
Bayes), LR (Logistic Regression), SVC (Support Vector
Classifier), DTC (Decision Tree Classifier), RF (Random
Forest), BG (Bagging Classifier), AB (AdaBoost), MLP
(Multi-Layered Perception). Each of the classifiers, ex-
cept MLP, was trained with Grid Search Cross-Validation
to pick the best parameters. MLP model had a fixed
architecture:

FC → ReLu → FC → ReLu → FC → Softmax

The chosen optimizer was Adam, with a learning rate of
0.0001, and the loss was calculated with Cross-Entropy
Loss. In some cases, we also had to account for class

imbalance by doing random oversampling. After training
the fitted models were tested on the test dataset, and
evaluated using performance measures, such as Preci-
sion, Recall, Accuracy, per-class F1, Balanced Accuracy,
Cohen Kappa Score(Cohen, 1960), were reported.

RESULTS

E. Clustering and Classification

Clustering quality was measured using silhouette
score, which measures the difference between the simi-
larity of a tumor to its own cluster (cohesion) compared
to its similarity to other clusters (separation). The sim-
ilarity is measured using Euclidean distance. The value
of this criterion ranges from 1 to +1. The below table
(Tab. I) summarizes silhouette scores for each of the four
clustering methods:

TABLE I
SILHOUETTE SCORES FOR CLUSTERING METHODS

Method Score
Spectrum -0.672

xGene 0.008
KMeans (on s.d.*) 0.042

DEC (on s.d.) 0.065
∗s.d. refers to stratified data

In general, all of our methods showed scores far less
than the best possible score, which is 1. However, in
the case of mutational profile subtyping, the value of
this criterion is not very descriptive of the biological
quality of the clusters even for state-of-the-art methods.
However it can be used to compare and contrast two
different methods. As we can see, Spectrum method per-
forms the worst in terms of clustering quality. Spectrum
and xGene perform relatively worse than KMeans and
DEC methods. This indicates that clustering quality is
improved when stratified data is being clustered. The
best performing is the DEC model of stratified data, the
score of which is pretty close to the score of a slightly
different architecture and a different application of the
Deep Embedded Clustering method on breast cancer
data (0.07)(Rohani et al., 2020). Considering the fact
that colorectal cancer is much more heterogenic and
highly variant from patient to patient compared to breast
cancer, reaching a similar performance level validates
the goodness and improvement of the model. For DEC
assigned clusters, PCA plots were obtained. 2 component
PCA plots showed visually identifiable 3 clusters, where
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3 component PCA plot showed horizontal separation of
the other clusters.

Fig. 7. 2 component PCA plot for DEC clusters

Fig. 8. 3 component PCA plot for DEC clusters

Classification was performed with two purposes. First,
was to find the model which can serve as a predictor
of a cluster assignment for an incoming record. This is
needed in the clinical application of subtyping. The sec-
ond purpose was, to have the best performing classifier
in mind, to compare its performance given the different
cluster assignments. This could also help for clustering
quality validation. Logistic Regression and custom MLP
models proved to perform relatively better than other
models at classifying all cluster assignments. However,
the performance measures for these classifiers varied
depending on the input data and clustering method used
for obtaining labels. because we had class imbalance, we
picked F1 score, Balanced Accuracy, and Cohen Kappa

score for evaluation, as these are the most descriptive
metrics to look at in case of unbalanced data. xGene
model labels along with non stratified data were the most
poorly classified with best models. The best values are
obtained using LDA with SVD ( Singular Value Decom-
position) as solver, and were 0.47 for Balanced Accuracy
and 0.23 for Cohen Kappa score. Class imbalance here
affects the performance as per-class F1 scores become
close to 0 for some classes.

Fig. 9. Balanced Accuracy on xGene assigned labels

Spectrum assigned labels along with non stratified data
provided better results. Best performing were Logistic
Regression and Bagging Classifiers, with LR giving
Balanced Accuracy of 0.89 and Cohen Kappa score of
0.86.

Fig. 10. Balanced Accuracy on Spectrum assigned labels

As anticipated, the clustering as well as classification
were more accurate for the stratified data and clusters
assigned to that data as labels. Here LR and MLP models
performed the best. LR giving 0.92 balanced accuracy
and 0.90 Cohen Kappa Score.
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Fig. 11. Balanced Accuracy on KMeans assigned labels

Even better performance was reported by DEC as-
signed clusters on stratified data, with Balanced Accu-
racy of 0.93 and Cohen Kappa of 0.94.

Fig. 12. Balanced Accuracy on DEC assigned labels

Fig. 13. Cohen Kappa Score on DEC assigned labels

Fig. 14. Distribution of patients by covariates per cluster

Additionally, Matthews Correlation Coefficient was
calculated for this method, as it is another method
for evaluating multi-class classification, and, as some
sources claim, can sometimes be competing with Cohen
Kappa score (Delgado & Tibau, 2019). However, it still
showed a high value - 0.93.

In all cases Logistic Regression was trained using L2
regularization as the penalty norm.
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F. Biological Evaluation

1) Batch Effect Confounding Analysis: After we were
able to achieve high predictive power with classification,
we moved on to analyze each cluster separately accord-
ing to various biological criteria. Firstly, it is possible
in biological data clustering that sometimes clusters can
form based on a variable that is not used as a feature dur-
ing clustering. Such covariates can be the demographic
variables, biological characteristics of the tumor, stage
of the cancer development or any other confounding
variables. To be sure our clusters were not we checked
for batch effect confounding accounting for Sex, Race,
Subtype, Primary Site of Tumor, and Tumor Mutation
Burden. None of the variables contributed to batch effect
in any cluster assignment, so the given clusters were not
affected by any covariates. The below figure shows batch
effect analysis results for DEC clusters (Fig. 14), graphs
for other covariates is provided in the Supplementary
Material.

2) Kaplan Meier Survival Analysis: To check how
survival differs in these clusters, we performed Kaplan
Meier Survival Analysis. The curves were fitted per
cluster, and the log-rank test was performed for each
pair from the 5 clusters. Over (Fig. 15). As we also can
see from the figure, the survival curves are pretty close to
each other, and the log-rank test proved this by showing
significant (p-value = 0.08 with α = 0.1) difference only
between clusters 1 and 4.

Fig. 15. Kaplan Meier curves by cluster (k = 5)

When the same analysis was done using k=10 clusters
(Fig. 16), batch effects again were not reported and the
survival curves were now showing more significantly
divergent pairs, namely 0/1, 0/2, 0/5, 0/7, 2/6, 2/8, 2/9,
3/5, 5/6, 5/8, 5/9, however not all clusters were showing
distinct survival patterns. This means the molecular

subdivision of tumors does not necessarily infer clinical
outcome differences.

Fig. 16. Kaplan Meier curves by cluster (k = 10)

Hidden information under the curve of each cluster
can be the treatment data that has been prescribed
to each patient. These curves may be a result of the
average of survival given a specific treatment in each
cluster subgroup. So to be able to better evaluate the
goodness of clusters this information need to be taken
into account. However, treatment data was not available
for this study,so this idea will be moved to further
investigation using other datasets.

CONCLUSION:FINDINGS AND FUTURE WORK

Cancer, and specifically colorectal cancer, is a highly
complex disease for which research to find personalized
treatment options is crucial. With a growing pool of
sequencing data, it is made available for researchers
to explore the predictive potential of somatic mutations
and copy number variations in the process of molecular
subtyping of cancer. Our research firstly aimed to test
and compare previously proposed promising methods
that have not been applied to colorectal cancer data
because of its biological complexity. We have tailored
these methods to fit to our data to get appropriate results.
Moreover, we proposed methods that combined theoreti-
cally and practically tested state-of-the-art concepts, such
as biological enrichment and clustering using deep neural
networks. These newly proposed combination methods
were also compared with the other methods we tested,
as well as the state-of-the-art results previously obtained
on different datasets.

Our findings showed that considering the complex-
ity of colorectal cancer mutational spectrum, biological
stratification of data is an essential step to perform before
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subtyping analysis. This conclusion was a result of the
evaluation of the four different clustering methods, as
well as classification methods applied to each of the
clustering labels. The models ran on non-stratified data
had poorer silhouette score and smaller classification
power. The best clustering algorithm was found to be
the Deep Embedded Clustering method ran on GSZ-
score stratified data, with 0.065 silhouette score for
cluster quality and 93% balanced accuracy with Logistic
Regression and MLP classifiers. Compared to the result
from another DEC method developed and tested by
Rohani et al. for breast cancer subtyping, our suggested
model, which inherited many concepts from the latter but
added and adjusted some of the algorithmic solutions
and parameter choices, provided very similar results.
Considering the fact that colorectal cancer is much more
heterogenic and highly variant from patient to patient,
getting this close to the performance of the algorithm on
breast cancer data is a good milestone that was reached.

Another finding was that these optimized clusters did
not show significantly different survival patterns. The
reason for this can be the hidden specific treatment
effect averaging. However, this hypothesis could not be
checked because the used dataset did not include treat-
ment data for the patients. This poses an ”to-do” item for
the future work in this area when these algorithms are
tested on other datasets. If this data is made available,
performing separate survival analysis for each cluster
may help identify treatments that significantly change
survival pattern in a specific cluster and not the other.
In clinical application, this analysis can serve as an
efficient treatment prediction for a predefined subgroup
of patients.

The drawback of this research has been the absence
of justification for the choice of the cluster number. The
analysis was run with k=5, which was chosen simply
based on biological intuition. Algorithms to predict the
most efficient number of clusters were suggesting to use
2 clusters, which was not going to be efficient for the
analysis. So future work will include designing domain-
specific algorithms that may be able to predict the
number of clusters that will be biologically meaningful.

Future work may also include integrating more biolog-
ical meaning into the clusters, such as functional analysis
of clusters based on the most over-represented genes in
them, and obtaining descriptive gene signature (set of
mutated genes specific to each cluster). These signatures
can be later used to model organisms representing each
cluster and experimentally test the efficiency of a pre-
dicted treatment.

All of the methods may later be applied to other types
of cancer as well. Pancreatic cancer is of special interest
for us, as it is a common cancer type of colorectal
metastasis.

The benefits of having this type of subtyping and
classification are reduced costs and more targeted, more
efficient and less toxic treatment for incoming cancer
patients. This research, along with many others which
have and are still trying to optimize solutions to this
complex task, are of fundamental importance to modern
precision medicine research and promise great potential
when reached a level of confidence to be applied in the
clinic.

SUPPLEMENTARY INFORMATION

All supplementary data and figures can be found
here.
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