
Vehicle License Plate Recognition in Armenia
Spring 2023

Author: Diana Sargsyan
BS in Data Science

American University of Armenia

Supervisor: Elen Vardanyan
American University of Armenia

Abstract—This capstone project presents an Automatic Num-
ber Plate Recognition (ANPR) system designed to detect and
recognize Armenian license plates. The system employs an object
detection algorithm to detect license plates, applies skew and
rotation adjustment to correct the orientation, and uses optical
character recognition to recognize the characters on the plate.
The project achieves a high accuracy rate of 90% on plate
detection and 95% on character recognition on a manually
collected dataset consisting of high-quality photos and videos.
Overall, this project presents a promising solution for ANPR
systems.

I. INTRODUCTION

Automatic License/Number Plate Recognition
(ANPR/ALPR) is a computer vision-based system that
has gained high popularity over the last few years due
to its ability to recognize license plates of vehicles and
provide multiple valuable applications such as traffic law
enforcement, parking enforcement, retail park security, and
tolling. Automatic Number Plate Recognition takes an image
or video as an input and detects vehicle license plate numbers.
An ANPR system is typically comprised of the following
steps:

1) Detection and localization of a license plate from a
vehicle image or frame.

2) Skew and rotation adjustment.
3) Character recognition.
The motivation behind this capstone project was to develop

an ANPR system for Armenian license plates. Upon thorough
research on automatic plate detection, there were no datasets
available for Armenian license plates.

After thorough research of the available number plate recog-
nition techniques, this project presents a system that uses an
object detection algorithm to identify license plates from a
given image or a video, applies preprocessing techniques to
fix the orientation of the license plate, and applies an optical
character recognition program to output the license plate
characters from the image. The Tools section of this paper
presents the specific software and hardware resources utilized
to complete the project. The Data section provides information
about the data collection methodology and any preprocess-
ing conducted. The Literature Review section presents an
overview of existing research and relevant literature. The Plate
Detection section details the techniques employed to detect
and localize license plates in images or video frames. The

Skew Adjustment section thoroughly explains the detection
and correction of rotation in license plate images. The Charac-
ter Recognition section focuses on recognizing the characters
on the license plate after the localization and skew adjustment
processes. The Video Detection and Recognition section
provides detailed information on how the system was applied
to videos. The Results and Discussion section assesses the
accuracy of the ANPR system and concludes the findings.
Finally, the Conclusion and Future Work section outlines
potential improvements for the proposed solution.

II. TOOLS

LabelImg, an annotation tool was used to prepare the
data. The research project utilized YOLOv7 to perform object
detection with high accuracy. The detection algorithm can
identify license plates on images and videos, providing the
competence needed for an ANPR system. Python was chosen
as the programming language for its user-friendly features.
Google Colaboratory was used for its free access to GPUs.
It also has no setup requirements, making it effortless to
use and significantly speeding up the training process for
plate detection. Jupyter Notebook was used to document
the project interactively. OpenCV (Open Source Computer
Vision), an image processing library, was used for its extensive
library of image and video processing functions. EasyOCR
was also utilized for its optical character recognition purpose
to recognize the numbers and letters on the extracted and
preprocessed license plates.

III. DATA

A. Image Data

Given that there are few datasets related to Armenia, one of
the motivations for this project was to accumulate an Armenian
license plate dataset. Collecting a custom dataset in Armenia
will allow future researchers to reproduce and use the existing
data in their projects and, most importantly, contribute to the
large gap in data availability in Armenia. The dataset used
in this project was manually collected by taking pictures of
vehicles in different locations in Yerevan and consists of 170
images. A video is also available in the project repository for
experimentation of the system on a video.



B. Label Data

To detect license plates from an image, there needs to be
a corresponding .txt file that contains the coordinates of the
number plate. An open-source graphical image annotation tool
called ”LabelImg” was used to gather these coordinates. The
tool provides data in Pascal VOC, YOLO, and Tensorflow
formats after users draw bounding boxes to mark the object
they want to detect from an image [1]. In this case, the
bounding box is placed over the license plates.

Fig. 1: Example of a LabelImg-generated .txt label file for
object detection.

The labeled data is saved as .txt or . xml files with the same
name as the image used to annotate over. LabelImg also saves
a classes.txt file with the name of the class being identified.
An example of a labeled .txt file can be seen in Figure 1.
This project has only one class because only one object: a
license plate, is being detected. The first integer in the label
file represents the object class number, starting from 0 instead
of 1. The following two numbers correspond to the x and y
coordinates of the bounding box, while the fourth and fifth
numbers represent the width and the height of the bounding
box, respectively [1].

IV. LITERATURE REVIEW

Many solutions have been proposed and applied to the
problem of ANPR in computer vision and image processing.
Kaur et al. [2] proposed approaching license plate localiza-
tion by implementing training on the object detection model
YOLOv5. YOLO is a widely used object detection algorithm,
first released in 2016 but has since had many developments
made to it and released multiple new versions. Currently,
the 7th version release of YOLO is considered the fastest
and most accurate real-time object detection model after
YOLOv8, which is a brand new release and is still undergoing
further development and research [3]. Podorozhniak et al. [4]
proposed identifying license plates with the use of Mask R-
CNN (Region-Based Convolutional Neural Network) which is
a two stage algorithm that first uses a convolutional neural
network (CNN) to perform feature map extraction and then
bounding box prediction and object classification.

A convolutional neural network is a type of network ar-
chitecture that is used in deep learning algorithms. CNNs
are most commonly used in image classification problems
such as object detection. In simple terms, convolutional neural
networks are made of layers that each do different processes
and separately learn to detect certain patterns. After an image
is processed through all of the layers the network is able to
detect objects in the image [5].

Upon research of previous capstone projects of the Ameri-
can University of Armenia, another number plate recognition

approach was made by Grigoryan and Matinyan which in-
cluded the use of CNNs to train a character recognition model
[6].

Fig. 2: YOLOv7 comparison with other real-time object de-
tectors. [7]

Figure 2 displays the performance of the YOLOv7 models
compared to other object detection methods. The comparison
is made by evaluating the inference time and Average Pre-
cision (AP) results. YOLOv7 performs 120% faster and with
better AP results [7].

Aggarwal and Munjal [8] presents a method of using tem-
plate matching to recognize the characters of the license plate.
Their method includes preparing a database of templates using
Microsoft paint, then after image preprocessing and character
segmentation the character is matched with every template
to identify the best match. Chen et al. [9] proposed using
OpenCV’s image processing functions to identify the license
plate and a 17-layer CNN model to recognize Chinese license
plates. Jung and Kim [10] presented a system for license
plate recognition that utilizes OpenCV’s image processing
functionality as well and uses the Tesseract OCR (Optical
Character Recognition) library, which is an OCR engine that
supports character recognition in over 60 languages. Optical
Character Recognition (OCR) is a technology that takes an
image containing text and outputs the text from the input,
which can later be used for editing and searching. OCR uses
machine learning algorithms to recognize and extract text from
images. An image file goes through preprocessing, character
segmentation and recognition, and other processes when OCR
is applied [11].

V. PLATE DETECTION

The first step in an ANPR system is plate detection. As
mentioned in the literature review section of this paper there
are a number of ways to localize an object from an image. The
object detection algorithm used in this project is YOLOv7, the
7th version of YOLO which Wang et al. [7] developed. YOLO
allows real-time object detection using convolutional neural
networks (CNNs) to take input images and detect objects in
them and it can identify a wide range of objects and outputs
fast results with high accuracy.



The YOLO algorithm works by separating an image into
segments by placing a grid on top of an input image, as
displayed in Figure 3 (a), and performing localization within
each box of the grid [12].

Each detected object is assigned a confidence degree, which
can be seen in Figure 3 (b). The thicker bounding boxes have
a higher confidence than the thin ones [12].

(a) Image after grid segmenta-
tion

(b) Image after object localiza-
tion

Fig. 3: Object detected image and image after low confidence
detection elimination

[12]

After object localization, YOLO performs object classifi-
cation by assigning each detected object a class. Based on
the classification, all of the possible classes are highlighted
and presented in Figure 4 (a). However, in order to increase
accuracy and eliminate uncertainty, a confidence threshold is
determined, which is 0.25 at default, and any classification
with a confidence less than 0.25 is eliminated, leaving only
the high-confidence objects depicted in 4 (b) [12].

(a) Image with many low con-
fidence objects detected

(b) Image after object low con-
fidence boxes are removed

Fig. 4: Object detected image and image after low confidence
detection elimination

To train YOLOv7 to detect license plates, a dataset of
images and their corresponding .txt files mentioned in the
Data section that contain the coordinates of their license plate
bounding box are necessary. Although YOLO can also be run
on the CPU, it would take considerably longer to train, so
for this project, Google Colab’s GPU capabilities were used
to train the model. The data was split to training and testing.
Out of the total 170 images, 80% were put in the training folder

and the rest were used to test on. YOLOv7 takes this data and
starts to train it. Initially, the data was used to train in batches
of 16 images, repeated for 200 epochs. Once the algorithm has
completed the training, a file “best.pt” is saved down which
contains the weights with the best performance. An additional
100 epochs were required to train the model for satisfactory
results. Following the completion of the training phase, YOLO
was used to test the algorithm’s ability to identify license
plates, and the results were saved to a designated folder. Figure
5 (a) shows the input image and Figure 5 (b) displays the
results after YOLOv7’s inference was applied. YOLOv7 was
successful and accurately identified the license plate in the
provided image. The bounding box outputs the confidence
of the algorithm which for Figure 5 is 0.8. The inference
script has a default confidence threshold value of 0.25, which
specifies to the algorithm that if the confidence of the detected
bounding box is less than 0.25 the bounding box will not be
shown on the image. The algorithm also provided the precise
coordinates of each detected license plate, which were later
utilized for image preprocessing and character recognition
purposes.

(a) Original Image from
Dataset

(b) Image after plate localiza-
tion

Fig. 5: Original Image and the image after YOLOv7 object
detection was applied

VI. SKEW ADJUSTMENT

One of ANPR’s main challenges is identifying the orienta-
tion of the license plate and correcting the rotation. Many
of the images in the dataset are taken at different angles
which results in the license plates in the pictures being
slightly rotated. If the orientation is not corrected the following
character recognition procedures may not perform as well
as they do on aligned license plate images. Multiple steps
are involved to fix the orientation of the license plate, such
as converting the image to grayscale, applying Canny edge
detection [16] to identify the edges of the license plate, and
using the Hough transform [17], which detects and extracts
straight lines in an image, and Affine transformation [19],
which preserves the shape of the input picture while changing
the orientation. This chapter focuses on clarifying how these



processing techniques work in adjusting the rotation of a
license plate image. To adjust skew, an image needs to be
cropped using the coordinates of the detected bounding box
to only include the image of the license plate.

A. Grayscale

Grayscaling is a process of transforming an image from
having color into an image consisting of shades of gray.
An example of a license plate image and its corresponding
grayscale image are available in Figure 6. The grayscaling
technique provides several benefits for image processing ap-
plications. Using gray images rather than color pictures is
simple and easier to work with. A color image contains three
color channels, one for each red, green, and blue component,
whereas a gray image only has one color channel, making
it less complex. It is also necessary to use grayscaling for
image processing algorithms, such as the Canny edge detection
function, which is designed to work specifically with grayscale
images. By converting the image to grayscale, these algorithms
can more easily detect and analyze the edges and shapes in
the picture [13].

(a) Original image after crop-
ping detected license plate

(b) Image after grayscale was
applied

Fig. 6: Visualization of cropped license plate image and the
grayscale image

B. Canny Edge Detection

Canny edge detection is one of the techniques implemented
to fix the orientation of license plate images. As the name
suggests, it is an algorithm for detecting the edges in a photo.
Edge detection makes it simpler to recognize the characters
on the plate. The edges allow for obtaining the boundaries
and ultimate shape of the license plate. To give a better
understanding of the outcome of edge detection, Figure 14
displays the result of canny edge detection applied to a number
plate photo.

1) Gaussian Filter: When canny edge detection is applied
to an image, the image is first smoothed with a Gaussian filter,
which is a 2D convolution kernel used to blur and reduce the
noise in the image. Gaussian filters are applied to photos to
make it easier for the edges to be identified [14]. The formula
for applying the Gaussian filter is given by 1:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

The x and y values are the coordinates of a pixel being
filtered. The σ value is the standard deviation of the Gaussian
kernel. [14].

Fig. 7: Visualization of an edge depicted by pixels [14]

2) Sobel Operator: An edge in an image is the sudden
change in the intensity of pixels, as shown in Figure 7. To
detect edges in an image, the Sobel operator is utilized [14].

The algorithm involves using two 3x3 kernels shown in
Figure 8, which are another name for small matrices: the
horizontal kernel, which calculates the intensity change of
pixels in the horizontal direction (x-direction), and the vertical
kernel, which calculates the intensity in the vertical direction
(y-direction) [14].

(a) Horizontal Direction Kernel (b) Verticle Direction Kernel

Fig. 8: The Sobel kernels in the horizontal and vertical
directions [14]

To understand a pixel’s intensity and the change of intensity,
the gradient is calculated, which is the derivative of a given
pixel [14].

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗A(x, y) (2)

Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗A(x, y) (3)

The formulas 2 and 3 calculate the gradient in the x and y
directions, where ∗ is a convolution operation, the calculation
will be explained further on in the paper, and A(x, y) is the
3x3 portion of image A with (x, y) as the center cell [14].

G =
√
G2

x +G2
y (4)

θ = arctan(Gy/Gx) (5)

Once the Gx and Gy are calculated, the magnitude (G) of
the gradient at pixel (x, y) and the direction of the gradient
(θ) can be calculated by the formulas 4 and 5 [14].



Fig. 9: Color image with edge [14]

To best understand how the Sobel operator works, an
example calculation is done on Figure 9. At first glance at
Figure 9, it is evident that the image changes in intensity. The
first step to detect the edge of the pixels is to convert the image
to grayscale, which is displayed in Figure 10 [14].

Fig. 10: Grayscale image of Figure 7 with intensity values
[14]

To calculate the gradients Gx and Gy of the pixel in the
second row and column, Figure 10 needs to be convolved
with the x and y directional kernels depicted in Figure 8 by
first calculating the gradient in the vertical direction (Gy).
The y-direction kernel is overlaid on Figure 10, resulting in
the visualization in Figure 11. Next, the x-direction kernel is
overlaid onto Figure 10 [14].

Fig. 11: The y-direction kernel overlaid on a grayscale image
with intensity values displayed [14]

The intensity values in Figure 11 are multiplied by the x
and y-direction kernel values, which result in Figure 12 [14].

(a) y-direction kernel (b) x-direction kernel

Fig. 12: Resulting values of horizontal and vertical kernel
multiplication to a portion of pixels [14]

The values of each resulting direction are added, and the Gx

and Gy value for the pixel in row and column two is 315. The
magnitude is ≈ 445. This calculation is done for each pixel,
and the highest magnitudes are considered the edges [14].

3) Non-maximum Suppression and Hysteresis Threshold-
ing: Non-maximum suppression clears the image by removing
unnecessary lines and keeping only the highest points in the
gradient. It compares each pixel’s gradient strength to the
strengths of its two neighboring pixels in the direction of the
gradient. If a pixel’s strength is higher than its neighbors, it is
marked as a ”local maximum”; if not, it is suppressed [15].

Fig. 13: Visualization of 8-connectivity neighborhood [15]

Hysteresis thresholding connects the strong edges and re-
presses the weak edges of a given image. This is done by
assigning threshold values for a high and low threshold. Then,
the pixels are filtered to check their gradient magnitude and
compare them with the threshold values. If the pixel’s gradient
magnitude exceeds the high threshold value, it is considered
a strong edge. If the gradient magnitude is lower than the
low threshold, it is considered a weak edge. When a pixel’s
gradient magnitude is between the two threshold values, it is
considered a part of an edge if they are connected to a strong
edge. Otherwise, it is a weak edge. A weak and strong edge
are connected if the weak edge is one of the eight neighbors
of the strong edge, otherwise known as 8-connectivity shown
in Figure 13. The resulting output is a binary image where the
strong edges are marked as white pixels, and the weak edges
are black pixels [15].

To conclude, the Canny edge detection algorithm works by
smoothing an image and calculating the gradient magnitude
and gradient orientation for each pixel of the image. The
image goes through non-maximum suppression, and finally,
hysteresis thresholding is applied. The license plate image after
canny edge detection has been used is depicted in Figure 14.
Please see [16] for details.



(a) Original image after crop-
ping detected license plate.

(b) Image after edge detection
is applied

Fig. 14: Cropped License Plate Image and Edge Detected
Image

C. Hough Transform

The next step in ANPR is applying Hough transform to
an image, which is another image processing algorithm that
detects and extracts straight lines in an image. This part of
the process is necessary for locating the orientation of the
characters on a license plate. Representing a straight line using
two parameters, slope, and intercept, denoted by (a, b), is a
well-known concept in elementary mathematics and is given
by Formula 6 [17].

y = ax+ b (6)

However, an alternative approach to uniquely defining a
line is by utilizing the polar system, involving two parameters
(ρ, θ), depicted in Figure 15. ρ refers to the perpendicular
distance from the origin to the line, θ represents the angle
between the x-axis and the distance line. This polar represen-
tation enables the description of vertical lines, which is not
feasible using the (a, b) parameters in the Cartesian system
[17].

Fig. 15: The ρ, θ parameters in the Cartesian Coordinate
System [17]

The formula for converting a line from the Cartesian co-
ordinate system to a point in the polar coordinate system is
given by the following formula:

ρ = x cos θ + y sin θ (7)

These (ρ, θ) coordinates can be plotted in the Hough space,
which denotes the set of all lines that pass through a specific
point in the image space.

A line in the Cartesian coordinate system is equivalent to
a point in the Hough space, which denotes the set of all lines
that pass through a specific point in the image space. This is
displayed in Figure 16. When several lines are drawn in the

Fig. 16: Visualization of a line represented in the Hough space
by the (ρ, θ) parameters [17]

image space that intersect at one point, they correspond to a
sinusoid in the Hough space, as shown in Figures 17. Plotting
multiple lines in the image space leads to several sinusoids
in the Hough space that intersect at a common point. The
intersection point represents the straight lines and intersections
in the Hough space can be searched to identify them. These
intersections correspond to the straight lines’ representative
(ρ, θ) parameters [17].

Fig. 17: Representation of many intersecting lines in the image
and Hough spaces [17]

The point where the sinusoids intersect in the Hough space
shows where the straight lines are located in the image
space. These straight lines can be found by looking for these
intersection points in the Hough space. Therefore, if a point is
drawn in the image space, the result in the Hough space will
be a sinusoid, as displayed in Figure 18. The (ρ, θ) values
of these intersection points represent the parameters of the
straight lines [17].

Fig. 18: Visualization of a point in the image space corre-
sponding to a sinusoid in the Hough Space [17]

When points that form a line in the image space are plotted,
they give rise to a set of sinusoids in the Hough space, depicted
in Figure 19. Remarkably, the sinusoids generated from these
points intersect at precisely one point. This property enables
the Hough transform to identify straight lines in an image. The



intersection point in the Hough space represents the parameters
of the straight line in the image space [17].

Fig. 19: Representation of points forming a line in the image
and Hough Spaces [17]

By applying this technique to an image of a license plate, in
Figure 20, the implementation of a Hough transform applied
to an image of a license plate can be observed.

(a) Original image after crop-
ping detected license plate

(b) Image after Lines Detected
using Hough Transform

Fig. 20: Cropped License Plate Image and Image after Hough
Transform

D. Rotation Angle Calculation

After Hough Transform has been implemented, the lines
detected can be used to calculate the rotation of the angle. To
calculate the angle between a line and the x-axis, the coor-
dinates for two points: (x1, y1) and (x2, y2), which connect
the line on the image, are taken. The formula 8 is used to
calculate the angle (α).

α = arctan

(
y2 − y1
x2 − x1

)
∗ 180

π
(8)

For each line, the angle is calculated then the median angle
is selected as the rotation angle.

E. Affine Transformation with Rotation Matrix

Once the dominant angle has been selected, a rotation
matrix is computed. To compute a rotation matrix, M the
getRotationMatrix2D function is used, which inputs the
center point, rotation angle, and a scale factor of 1.0. The
function for computing the rotation matrix M can be observed
in Formula 9, where, α = scale · cos θ, β = scale · sin θ, and
Cx and Cy are the coordinates of the center of the image. It
returns a 2x3 affine transformation matrix that can be used to
rotate and scale the image [18].

M =

[
α β (1− α) · Cx − β · Cy

−β α β · Cx + (1− α) · Cy

]
(9)

The next step is to apply the rotation matrix M to the
input image using an Affine transformation. An Affine trans-
formation is a 2D linear transformation that preserves the

straightness of lines by taking the source image, the M rotation
matrix, and the size of the output image and producing a
straightened image. The transformation is widely used in
image processing for correcting the orientation of images. For
this project, by applying the Affine transformation, the license
plate image skew is adjusted as seen in Figure 21, resulting in
higher character recognition accuracy. For more details about
affine transformations please see [19].

(a) Original image after crop-
ping detected license plate

(b) Image after the Orientation
Correction

Fig. 21: Cropped License Plate Image and Rotation Adjusted
Image

VII. CHARACTER RECOGNITION

A. Contour Detection and Aspect Ratio

Contour detection is the primary technique used in image
processing, and it can often be used to localize and separate
multiple objects in a given image. Contour detection has
played a massive role in numerous applications such as image
segmentation, object recognition, etc. A contour is a curve that
connects the points of similar intensity and color on the bound-
ary of an object. In order to detect and visualize the contours in
OpenCV, two functions are utilized: the findContours()
function, which detects the contours of the license plates in the
image, and the drawContours() function, which overlays
the identified contours on the original image [20].

In the context of this project, contour detection is helpful
for accurately identifying the characters’ boundaries in the
license plate, as demonstrated in Figure 22. The algorithm
successfully separated the characters’ contours and the license
plate itself. To identify the contour of the license plate, it is
necessary to check the aspect ratio of each contour and check
if the ratio matches the ratio of a license plate [21].

The aspect ratio formula is given by Formula 10.

ratio =
width

height
(10)

(a) Skew adjusted image (b) Detected contours on image

Fig. 22: Rotated Image and Contours Detected Image

B. EasyOCR

Once the license plate has been detected and the orientation
of the plate has been adjusted, the next step in this ANPR



project is character recognition. For this implementation, Easy-
OCR was utilized to obtain the license plate text. EasyOCR is
a Python library that simplifies Optical Character Recognition
(OCR) for computer vision developers. As its name suggests,
it is easy to use and is considered the most uncomplicated
method for applying OCR [22]. Due to its easy integration of
OCR and high accuracy results, applying EasyOCR directly
without the use of additional CNN training was a simple
approach to get high results.

(a) Original Image (b) Image after ANPR

Fig. 23: Original Image and Image after Automated Number
Plate Recognition

The result of the ANPR system applied to an image is shown
in Figure 23.

VIII. DETECTION AND RECOGNITION ON VIDEOS

Although the main aspects of ANPR remain the same when
applying it to videos, some additional steps must be taken.
Initially, YOLOv7 is used to detect the license plates from the
video and output a video with the detected license plates and
their corresponding bounding box coordinate files. YOLOv7
splits the video into frames, applies object detection on each
frame, and saves the coordinates of the bounding box of each
frame.

The next step is to split the video into frames; the frames are
then cropped to include only the license plate, preprocessing
is applied to the cropped frame, the orientation of the plate is
adjusted, and EasyOCR is applied to recognize the text. Next,
the bounding box coordinates are used to draw a bounding
box around the detected frame and add the recognized text.
The resulting image is similar to Figure 23 and is saved in a
separate folder. Once all of the video frames have undergone
this process, OpenCV’s video processing functions are used
to add all of the frames together and output the video file.
An example of a detected video can be found in the GitHub
repository of this project.

To reduce computation time of video processing, instead
of processing each frame per second (which could be around
30 frames per second), every 5th frame was processed. The
smoothness of the video was reduced but the computation
time is saved by a factor of 5. For instance, if the original

video was 10 seconds long and had 300 frames (30 frames
per second), only 60 frames would be processed. However,
if these 60 frames were written into a video with the default
frame rate of 30 frames per second, the resulting video would
only be 2 seconds long (60/30).

To avoid this issue and maintain the original length and
speed of the video, the output video frame rate was adjusted
to 6 frames per second. This compensates for the fact that the
original video was being reduced by a factor of 5, meaning
that each second of the original video is now represented by
1 second / 5 = 0.2 seconds in the new video. Therefore, the
frame rate also needs to be reduced by a factor of 5 to maintain
the original speed of the video.

IX. RESULTS AND DISCUSSION

A. Plate Localization Results

The results of the YOLOv7 object detection algorithm can
be evaluated by multiple criteria such as precision, recall and
mAP (mean Average Precision).

Fig. 24: Plots of the precision, recall, and mAP of the training
of license plate detection in YOLOv7

The precision can be defined as how often the model
detection is correct , and the recall can be described as a metric
that evaluates if the model has detected the object each time
it was present [2].

The formulas to calculate the precision and recall are given
by Formula 11 and 12, where TP is the number of true
positive results, FP is the number of false positive results,
and FN is the number false negative results.

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

The results of the training of YOLOv7 on the dataset with
100 epochs can be seen in Figure 24, which shows metrics



such as precision and recall throughout the training. By the
end of the training the precision is close to 80% and the
recall is between 80-90%. After training object detection using
YOLOv7, the algorithm is tested. As depicted in Figure 25,
the training results were successful, and the algorithm could
detect license plates accurately.

Fig. 25: Results of test batch after training YOLO

B. Character Recognition Results

To test the results of the EasyOCR implementation, a subset
of the data used for training license plate detection was used to
test the results. The label data of the images was used to crop
the dataset into just the license plate pictures. Next, the data
went through skew adjustment, and EasyOCR was applied.
The algorithm’s results were compared to a list containing
the actual license plate numbers. 155 out of 161 characters
were recognized correctly, giving an overall accuracy of 96%.
Another metric used to test the performance of the character
recognition was the Levenshtein distance which compares two
strings and outputs a number of how different they are [24].

The formula to compute the Levenshtein distance given two
strings a and b is the following:

leva,b(i, j) =


max(i, j), ifmin(i, j) = 0,

min


leva,b(i− 1, j) + 1,

leva,b(i, j − 1) + 1,

leva,b(i− 1, j − 1) + 1(ai ̸=bj), otherwise
(13)

The i and j values refer to the character positions of strings
a and b respectfully. The results showed the average distance
between two strings to be 0.25 [24].

X. CONCLUSION AND FUTURE WORK

This project has developed an Automatic Number Plate
Recognition (ANPR) system to perform image processing and
produce accurate results. The system implements object de-
tection using the YOLOv7 object detection model, OpenCV’s
library of functions for converting an image to grayscale,
detecting the edges, identifying the straight lines, computing
the angle by which the image lines are skewed, fixing the
orientation of the license plate, and recognizing the license
plate characters. The system has achieved a high accuracy rate
of 90% on plate detection and 95% on character recognition on
a dataset consisting of Armenian license plates. Despite these
promising results, there is still scope for improvement, and
it is essential to evaluate the project objectively and identify
areas for further development.

One of the major areas for improvement of the system
is the computation time. Although it is able to detect and
recognize license plate numbers on videos, the running time
of the system is high. The project would benefit greatly from
finding more optimal solutions to the problem.

Due to the scarcity of data available in Armenia, the dataset
used in this project was manually collected by capturing im-
ages using a smartphone. This method has produced a dataset
consisting mainly of high-quality photos and videos. However,
to test the system’s effectiveness, obtaining a dataset with
lower-quality images and videos would be necessary. Although
EasyOCR has delivered promising results with high-quality
data, it would be worthwhile to explore the possibility of
training a Convolutional Neural Network (CNN) to recognize
low-quality characters in images.

To enhance this project, exploring additional data acquisi-
tion methods and the image processing techniques may be
necessary. Additionally, it would be helpful to optimize the
computational time cost of the system in order to provide more
opportunities of application of the system.

REFERENCES

[1] heartexlabs. (2022, September). labelImg. Github. https://github.com/
heartexlabs/labelImg

[2] Kaur, S., Jain, A., Gupta, J., & Khandelwal, S. (2021). Vehicle License
Plate Recognition. Zenodo (CERN European Organization for Nuclear
Research). https://doi.org/10.5281/zenodo.5171216

[3] Boesch, G. (2023). Object Detection in 2023: The Definitive
Guide. viso.ai. https://viso.ai/deep-learning/object-detection/#:∼:text=
on%20Viso%20Suite-,Most%20Popular%20Object%20Detection%
20Algorithms,the%20single%2Dshot%20detector%20family.

https://github.com/heartexlabs/labelImg
https://github.com/heartexlabs/labelImg
https://doi.org/10.5281/zenodo.5171216
https://viso.ai/deep-learning/object-detection/#:~:text=on%20Viso%20Suite-,Most%20Popular%20Object%20Detection%20Algorithms,the%20single%2Dshot%20detector%20family.
https://viso.ai/deep-learning/object-detection/#:~:text=on%20Viso%20Suite-,Most%20Popular%20Object%20Detection%20Algorithms,the%20single%2Dshot%20detector%20family.
https://viso.ai/deep-learning/object-detection/#:~:text=on%20Viso%20Suite-,Most%20Popular%20Object%20Detection%20Algorithms,the%20single%2Dshot%20detector%20family.


[4] Podorozhniak, A., Liubchenko, N., Sobol, M., & Onishchenko, D.
(2023). USAGE OF MASK R-CNN FOR AUTOMATIC LICENSE
PLATE RECOGNITION. Sučasnı̀ Ìnformacı̀jnı̀ Sistemi, 7(1), 54–58.
https://doi.org/10.20998/2522-9052.2023.1.09

[5] Awati, R. (2023). convolutional neural network (CNN). Enterprise
AI. https://www.techtarget.com/searchenterpriseai/definition/
convolutional-neural-network

[6] Grigoryan, M., & Matinyan, A. (2020). Automatic Vehicle Number Plate
Detection and Recognition. American University of Armenia

[7] Wang et al. (2022). YOLOv7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696. https://github.com/WongKinYiu/yolov7

[8] Aggarwal, N., & Munjal, S. (2022). Automated Number Plate
Recognition Using Template Matching. www.academia.edu.
https://www.academia.edu/69856610/Automated Number Plate
Recognition Using Template Matching

[9] Chen, H., Lin, Y., & Zhao, T. (2023). Chinese License Plate Recognition
System Based on Convolutional Neural Network. Highlights in Science,
Engineering and Technology, 34, 95–102. https://doi.org/10.54097/hset.
v34i.5386

[10] Jung, Y. C., & Kim, H. J. (2018). Design and implementation of
lightweight vehicle license plate recognition module utilizing open CV
and Tesseract OCR library. International Journal of Engineering &
Technology. https://doi.org/10.14419/ijet.v7i2.33.14184

[11] What is OCR? - Optical Character Recognition Explained - AWS. (n.d.).
Amazon Web Services, Inc. https://aws.amazon.com/what-is/ocr/#:∼:
text=Optical%20Character%20Recognition%20(OCR)%20is,scan%
20as%20an%20image%20file.

[12] Yolov7: Artificial Intelligence for real-time object detection in an
image. (2023, January 19). Novelis Innovation. https://novelis.io/news/
yolov7-artificial-intelligence-for-real-time-object-detection-in-an-image/

[13] GeeksforGeeks. (2023). Python Grayscaling of Images using
OpenCV. GeeksforGeeks. https://www.geeksforgeeks.org/
python-grayscaling-of-images-using-opencv/

[14] Sears-Collins, A. (2019, December). How the Sobel Operator
Works. AutomaticAddison.com. https://automaticaddison.com/
how-the-sobel-operator-works/

[15] He, Y., Hu, T., & Zeng, D. (2019). Scan-flood Fill(SCAFF):
an Efficient Automatic Precise Region Filling Algorithm for
Complicated Regions. https://www.researchgate.net/publication/
333678982 Scan-flood FillSCAFF an Efficient Automatic Precise
Region Filling Algorithm for Complicated Regions

[16] OpenCV: Canny Edge Detection. (n.d.). OpenCV. https://docs.opencv.
org/4.x/da/d22/tutorial py canny.html

[17] Tomasz.Kacmajor. (2020, May 17). Hough Lines Transform Explained -
tomaszkacmajor.pl. tomaszkacmajor.pl. https://tomaszkacmajor.pl/index.
php/2017/06/05/hough-lines-transform-explained/

[18] GeeksforGeeks. (2023). OpenCV: getRotationMatrix2D
Function. GeeksforGeeks. https://www.geeksforgeeks.org/
python-opencv-getrotationmatrix2d-function/

[19] OpenCV: Affine Transformations. (n.d.). https://docs.opencv.org/3.4/d4/
d61/tutorial warp affine.html

[20] Contour Detection using OpenCV (Python/C++). (n.d.). LearnOpenCV –
Learn OpenCV, PyTorch, Keras, Tensorflow With Examples and Tutori-
als. https://learnopencv.com/contour-detection-using-opencv-python-c/
#What-are-Contours

[21] How to compute the aspect ratio of an object in an image
using OpenCV Python. (n.d.). https://www.tutorialspoint.com/
how-to-compute-the-aspect-ratio-of-an-object-in-an-image-using-opencv-python.

[22] Rosebrock, A. (2021, August 18). Getting started with
EasyOCR for Optical Character Recognition - PyImage-
Search. PyImageSearch. https://pyimagesearch.com/2020/09/14/
getting-started-with-easyocr-for-optical-character-recognition/

[23] OpenCV: Getting Started with Videos. (n.d.). https://docs.opencv.org/3.
4/dd/d43/tutorial py video display.html

[24] Nam, E. (2019, February 26). Understanding the Levenshtein Distance
Equation for Beginners. Medium. https://medium.com/@ethannam/
understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0

https://doi.org/10.20998/2522-9052.2023.1.09
https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-network
https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-network
https://github.com/WongKinYiu/yolov7
https://www.academia.edu/69856610/Automated_Number_Plate_Recognition_Using_Template_Matching
https://www.academia.edu/69856610/Automated_Number_Plate_Recognition_Using_Template_Matching
https://doi.org/10.54097/hset.v34i.5386
https://doi.org/10.54097/hset.v34i.5386
https://doi.org/10.14419/ijet.v7i2.33.14184
https://aws.amazon.com/what-is/ocr/#:~:text=Optical%20Character%20Recognition%20(OCR)%20is,scan%20as%20an%20image%20file.
https://aws.amazon.com/what-is/ocr/#:~:text=Optical%20Character%20Recognition%20(OCR)%20is,scan%20as%20an%20image%20file.
https://aws.amazon.com/what-is/ocr/#:~:text=Optical%20Character%20Recognition%20(OCR)%20is,scan%20as%20an%20image%20file.
https://novelis.io/news/yolov7-artificial-intelligence-for-real-time-object-detection-in-an-image/
https://novelis.io/news/yolov7-artificial-intelligence-for-real-time-object-detection-in-an-image/
https://www.geeksforgeeks.org/python-grayscaling-of-images-using-opencv/
https://www.geeksforgeeks.org/python-grayscaling-of-images-using-opencv/
https://automaticaddison.com/how-the-sobel-operator-works/
https://automaticaddison.com/how-the-sobel-operator-works/
https://www.researchgate.net/publication/333678982_Scan-flood_FillSCAFF_an_Efficient_Automatic_Precise_Region_Filling_Algorithm_for_Complicated_Regions
https://www.researchgate.net/publication/333678982_Scan-flood_FillSCAFF_an_Efficient_Automatic_Precise_Region_Filling_Algorithm_for_Complicated_Regions
https://www.researchgate.net/publication/333678982_Scan-flood_FillSCAFF_an_Efficient_Automatic_Precise_Region_Filling_Algorithm_for_Complicated_Regions
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://tomaszkacmajor.pl/index.php/2017/06/05/hough-lines-transform-explained/
https://tomaszkacmajor.pl/index.php/2017/06/05/hough-lines-transform-explained/
https://www.geeksforgeeks.org/python-opencv-getrotationmatrix2d-function/
https://www.geeksforgeeks.org/python-opencv-getrotationmatrix2d-function/
https://docs.opencv.org/3.4/d4/d61/tutorial_warp_affine.html
https://docs.opencv.org/3.4/d4/d61/tutorial_warp_affine.html
https://learnopencv.com/contour-detection-using-opencv-python-c/#What-are-Contours
https://learnopencv.com/contour-detection-using-opencv-python-c/#What-are-Contours
https://www.tutorialspoint.com/how-to-compute-the-aspect-ratio-of-an-object-in-an-image-using-opencv-python.
https://www.tutorialspoint.com/how-to-compute-the-aspect-ratio-of-an-object-in-an-image-using-opencv-python.
https://pyimagesearch.com/2020/09/14/getting-started-with-easyocr-for-optical-character-recognition/
https://pyimagesearch.com/2020/09/14/getting-started-with-easyocr-for-optical-character-recognition/
https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html
https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0

	Introduction
	Tools
	Data
	Image Data
	Label Data

	Literature Review
	Plate Detection
	Skew Adjustment
	Grayscale
	Canny Edge Detection
	Gaussian Filter
	Sobel Operator
	Non-maximum Suppression and Hysteresis Thresholding

	Hough Transform
	Rotation Angle Calculation
	Affine Transformation with Rotation Matrix

	Character Recognition
	Contour Detection and Aspect Ratio
	EasyOCR

	Detection and Recognition on Videos
	Results and Discussion
	Plate Localization Results
	Character Recognition Results

	Conclusion and Future Work
	References

