
Abstract—This report describes the development and imple-
mentation of an A/B testing platform using the Thompson
Sampling algorithm with Bernoulli rewards. The project aims
to significantly enhance decision-making processes in digital
marketing by optimizing testing strategies and improving user
engagement. Our product is flexible and can be adapted for use
across various business platforms, providing real-time insights in
business settings.

I. INTRODUCTION

A/B testing is a fundamental tool in digital marketing.
It can be applied to website optimization, email marketing,
app development, and ad campaigns. Traditional A/B testing
methods, while effective, are time-consuming and require large
sample sizes to achieve statistical significance. This project
aims to develop a tool that employs Thompson Sampling—a
probabilistic, Bayesian approach for real-time analysis to
identify the most effective option in any given scenario.
Additionally, the project will enhance this tool into a rec-
ommendation engine capable of providing real-time, person-
alized recommendations. The project includes a microserver
architecture(Database, API) which helps deploy it quickly in
various environments, providing users with the opportunity to
efficiently create and test experiments.

II. PROBLEM STATEMENT

The challenge of making optimal choices in real time is
a significant issue in various domains such as e-commerce,
content delivery, and interactive platforms. Traditional meth-
ods for decision-making often fail to adapt dynamically to
new information, which is crucial in environments where
user interactions and preferences change rapidly—such as
high-throughput online settings and time-sensitive business
environments. Traditional testing methods are not only slow
but also struggle to provide the flexibility needed for high-
frequency testing.

While advanced algorithms are capable of providing im-
mediate feedback and fast adaptation, their practical imple-
mentation is often limited to large corporations, due to high
resource demands. These challenges create an opportunity for
businesses to use a mathematical approach based on the multi-
armed bandit problem. This approach helps businesses effi-
ciently choose between available options, explore and exploit
these choices, and adapt the solution to various businesses
regardless of their sizes and needs.

A. Specific Challenges

• Dynamic Adaptation: Develop a system capable of
adapting its decision-making process based on continuous
user interactions and feedback.

• Optimization of Exploration vs. Exploitation: Effi-
ciently balance the exploration of new options and the
exploitation of known ones to maximize user satisfaction
and business outcomes.

• Reduction in Testing Duration: Minimize the time
required to reach statistically significant conclusions in
A/B testing scenarios.

• Real-time Penalization: Implement a recommendation
engine that adjusts its suggestions in real time according
to user preferences, providing personalized user experi-
ences.

III. LITERATURE REVIEW

A. Docker

Docker is a platform that simplifies the packaging, distri-
bution, installation, and execution of applications by using
containers. Containers are isolated environments that provide
a lightweight alternative to traditional virtual machines. The
core component of Docker is the Docker Engine. It is a client-
server-based application with a server-side daemon process.
Clients communicate with the server using a REST API.
For operational commands, Docker provides a command-line
interface (CLI) that interacts with Docker daemons to manage
Docker objects such as images, containers, networks, and
volumes. Additionally, Docker provides Docker Compose, a
tool for defining and running multi-container Docker applica-
tions. With Compose, you can use a YAML file to configure
your application’s services, networks, and volumes, and then
create and start all the services from your configuration with
a single command. This simplifies the process of managing
complex container setups, making it easier to automate and
scale applications across different environments. [Merkel].

The installation of Docker can be different based on the
operating system, but Docker provides straightforward instruc-
tions for Windows, macOS, and various Linux distributions.

B. FastAPI

Fast API is a modern, fast web framework for building
API’s with Python. The framework is designed to be easy
to use and makes it simple to create robust APIs. One of the
features of Fast-API is its automatic generation of interactive
API documentation using Swagger UI and ReDoc. This makes
it easier for data scientists to visualize and interact with the
API’s endpoints [Triangolo].

Advanced features of FastAPI such as asynchronous request
handling, allows it to handle a larger volume of requests per
second than traditional synchronous code. This is particularly
useful in environments where real-time data processing is
crucial, such as in applications requiring immediate user
feedback [Jones].

C. Bayesian A/B Testing

A/B testing is a method used in digital marketing to compare
two versions of arms to understand which one is better. Users
are assigned to the control or testing group randomly and based
on user interaction insights are drawn.

By integrating Bayesian statistics into A/B testing frame-
works, we can get more dynamic testing by continuously
learning from user behaviour

1



Bayesian Update Formula: Bayesian statistics is an ap-
proach that is fundamentally different from traditional statis-
tics. It is about updating our knowledge base using probabil-
ities and evidence. it is named after Thomas Bayes an 18th-
century mathematician and Presbyterian minister.

In Bayesian statistics we update our prior believes using
update formula. The formula is given by:

p(θ|X) =
p(X|θ)p(θ)

p(X)

where:
• θ: the mean of a Bernoulli random variable.
• X: the data collected.
• p(θ|X): the posterior distribution.
• p(X|θ): the likelihood.
• p(θ): the prior distribution.
• p(X): the evidence, which is often challenging to com-

pute directly.
Conjugate Priors: In Bayesian statistics, the prior distri-

bution indicates what we know about the parameter before
considering new data. After observing new data, this prior
is updated using Bayes’ theorem, resulting in the posterior
distribution. Conjugate priors simplify the updating process.
A prior is considered conjugate to a likelihood function if the
posterior distribution is in the same family of distributions
as the prior distribution. This property simplifies the math-
ematical computations for Posterior Distribution calculations,
allowing for analytical solutions instead of numerical methods.

p(θ|X) ∼ Beta(a+
∑

xi, b+N −
∑

xi)

where a and b are the parameters of the prior Beta distribution,
N is the number of trials, and

∑
xi is the number of successes.

Epsilon-Greedy Algorithm: The Epsilon-Greedy algorithm
is a simple method to balance exploration and exploitation:

• With probability ϵ, choose a random option (exploration).
• With probability 1 − ϵ, choose the best-known option

(exploitation).
Thompson Sampling with Bernoulli Rewards: Thompson

Sampling chooses the next option relying on the probability
of it being the best. It uses the Bernoulli reward system. One
of the advantages Is that Thompson sampling utilizes Beta-
Bernoulli conjugacy.

θ|X ∼ Beta(a+
∑

xi, b+N −
∑

xi)

Advantages of Thompson Sampling with Bernoulli Rewards:

1) Conjugate Prior: As the Thompson sampling uses
conjugacy it simplifies computations for posterior cal-
culations.

2) Real-Time Capability: The distributions can be updated
real-time.

3) Proven Effectiveness: Empirically out preforms other
strategies by convergence and performance.

IV. METHODOLOGY

This section is about methodological approach for im-
plementing real-time decision-making and recommendation
engine which uses Containerized approach. The system is
designed in a way to ensure scalability and efficiency.

A. Platform Architecture

The project uses Docker,which helps our system to maintain
consistency across various development and production envi-
ronments. It ensure that the application performs identically
regardless of the underlying infrastructure.This is largely due
to Docker’s OS-agnostic nature, allowing it to run on any
operating system without modification.

B. Container Configuration

The system architecture consists of three main Docker
containers, each serving a distinct role: (Fig. 1 ) We used
volumes so any data created inside a container would not
be lost when the container is deleted. Also we utilized ports
to allow Docker container to communicate with the outside
environment as well as with other containers.

• API Container: FastAPI interacts with both the frontend
and the database. It supports request validation, ensuring
that the data received from users meets the expected
format before processing. It also handles automatic API
documentation, request validation, and serialization

• Database Container: Manages a PostgreSQL database,
selected for its robustness and ability to handle large vol-
umes of data with complex transactions. This container
stores user data, preferences, and interaction logs.

• PgAdmin Container: Provides a web-based PostgreSQL
database administration interface, helping with the man-
ageability and monitoring of the database operations.

The interaction within the system unfolds as follows:
1) User Interaction: A user interacts with the frontend,

which sends requests to the FastAPI application.
2) Request Processing: FastAPI receives the request, pro-

cesses it, and if the request involves data (like fetching,
updating, or inserting data), it communicates with the
PostgreSQL database to execute the necessary opera-
tions.

3) Database Management: While the above interactions
occur, pgAdmin can be used in parallel to monitor
database performance, run maintenance tasks, or execute
direct database manipulations as needed.

4) Response Handling: Once the necessary data is pro-
cessed and retrieved from the database, FastAPI pack-
ages this data into a response and sends it back.

C. Database

The database schema for this project consists of three
primary tables, each designed to manage different types of
data and relationships:

Project Table: This table stores information on
created projects. Each row includes project’s unique

2



Fig. 1. Conceptual flowchart illustrating the deployment and scalability
workflow in our Dockerized environment

Fig. 2. ERD of the Database

identifier, description, number of bandits involved,
and start date. It is main repository for all data.
Bandit Table: This table stores detailed infor-
mation about each bandit participating in all avail-
able projects. It is associated with the project table
through a foreign key. It includes a unique identifier
for each bandit, the project ID they are linked to, and
key statistical parameters: alpha, beta, and n values.
This table is important for the analysis.
UserEvent Table: This table tracks the user interac-
tion with the bandits. It stores each event with details
such as a unique event identifier, the associated
project and bandit IDs, the type of event, and the
event’s time.

D. Thompson Sampling Algorithm

The system is powered by Thompson Sampling algorithm,
which is integrated within the FastAPI framework to manage
real-time analysis and decision-making. This method allows
the system to adapt to user interactions and preferences by
adjusting the likelihood of each recommendation or A/B test
option, based on the user feedback. Thompson Sampling is
a Bayesian approach that takes a prior distribution over the

Fig. 3. Initial Beta distributions of bandits at the start of the experiment for
project 16

probability of success for each option (arm). Then it updates
this belief based on the received feedback, using the updated
distribution to make decisions about which arm to pull next.

E. Mathematical Formulation

The implementation of Thompson Sampling involves sev-
eral key steps:

1) Prior Distribution: Initially, each arm’s probability
of success is modeled with a Beta distribution, often
starting with parameters α = 1 and β = 1, This using
a uniform prior distribution to show that there is initial
uncertainty. (Fig.3)

Prior: θi ∼ Beta(αi, βi)

2) Updating the Distribution: After each pull of an arm i
and observing the result xi (success or failure), update
the parameters of the Beta distribution for that arm:

αi ← αi + xi, βi ← βi + (1− xi)

where xi is 1 for success and 0 for failure.(Fig4)
3) Sampling and Decision Making: At each decision

point, sample a probability from the updated Beta dis-
tribution for each arm:

θ̂i ∼ Beta(αi, βi)

Choose the arm with the highest sampled probability:

i∗ = argmax
i

θ̂i

We can observe that throughout the course of the experi-
ment, the distributions of the bandits evolve. Initially, the dis-
tributions have varied shapes and parameters. however, as the
experiment continues, these distributions gradually change and
become more distinct, indicating a clearer understanding of
each bandit’s potential. If we increase number of experiments
the distributions will become more clear. (fig5)

3



Fig. 4. Mid-experiment Beta distributions for project 16

Fig. 5. Final Beta distributions at the conclusion of the experiment for project
16

V. RESULTS

In this section, we present the outcomes of deploying our
A/B testing platform, which is powered by the Thompson
Sampling algorithm. We will explore the key functionalities
of the system and the benefits they offer to users in a practical
marketing problems.

A. Project Initialization and Management

The platform supports project management functionalities.
Users can initiate new A/B testing projects, specifying essen-
tial details such as project descriptions and the number of
testing variants. This setup not only makes the project creation
process easier but also ensures that each testing scenario is
uniquely identifiable and traceable, providing the opportunity
of managing multiple projects.

B. Adaptive Bandit Selection

Utilizing the Thompson Sampling algorithm, the system se-
lects the most effective variant or bandit for each project based
on ongoing data analysis. This capability allows the platform

to adapt to changing user preferences and interaction patterns
in real-time, optimizing the selection process continuously and
enhancing the overall effectiveness of the A/B testing.

C. Feedback Integration and Algorithm Optimization

A critical feature of our platform is its ability to include user
feedback into the algorithm’s learning process. This feedback
influences the probability models of the variants, allowing the
system to refine its predictions and choices based on actual
user responses. Such an interactive feedback mechanism not
only improves the accuracy of the algorithm but also makes
the system more responsive to user needs and preferences.

D. Comprehensive Variant Evaluation

For more detailed analysis, the platform offers an endpoint
that selects multiple top-performing variants from a project.
This feature is crucial for comparing performances and un-
derstanding how different variants perform. It helps make
strategic decisions by showing which options work best under
certain conditions.

1) Plot Generation for Bandit Distributions: The platform
includes an endpoint that generates plots of beta distributions
for all bandits associated with a given project. This feature
allows users to visually assess the effectiveness of each bandit
in real time. By fetching the alpha and beta parameters of
each bandit from the database, the system can plot their beta
distributions, offering insights into how likely each bandit is
to succeed based on past performance.

VI. CONCLUSION

Overall, the platform provides a sophisticated tool set for
optimizing digital marketing strategies through targeted A/B
testing. The combination of real-time adaptive testing, detailed
feedback integration, and comprehensive data analysis capa-
bilities makes it a valuable resource for organizations aiming
to enhance user engagement and increase conversion rates
through refined marketing tactics. The system’s containerized
architecture ensures that it can be adapted to a wide range of
applications, from small-scale experiments to enterprise-level
deployments.

REFERENCES

[1] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux Journal, vol. 2014, no. 239, p. 2,
2014. Available: https://linuxjournal.com

[2] S. R. Tiangolo, “FastAPI official documentation,” 2020. [Online]. Avail-
able: https://fastapi.tiangolo.com/. Accessed on: May 10, 2024.

[3] M. Jones, “Performance of Python Web Frameworks,” Journal of Web
Development, vol. 28, pp. 204-213, 2021.

[4] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, “A
Tutorial on Thompson Sampling,” Foundations and Trends® in Machine
Learning, vol. 11, no. 1, pp. 1-96, 2018.

[5] W. R. Thompson, “On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples,” Biometrika,
vol. 25, no. 3/4, pp. 285-294, 1933.

[6] O. Chapelle and L. Li, “An Empirical Evaluation of Thompson Sam-
pling,” in Advances in Neural Information Processing Systems, vol. 24,
2011.

4


	Introduction
	Problem Statement
	Specific Challenges

	Literature Review
	Docker
	FastAPI
	Bayesian A/B Testing

	Methodology
	Platform Architecture
	Container Configuration
	Database
	Thompson Sampling Algorithm
	Mathematical Formulation

	Results
	Project Initialization and Management
	Adaptive Bandit Selection
	Feedback Integration and Algorithm Optimization
	Comprehensive Variant Evaluation
	Plot Generation for Bandit Distributions


	Conclusion
	References

