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Abstract—TIn statistical modeling, the precise choice of methods
is closely related to the assumptions about the data, the violation
of which can yield biased results. Bayesian statistics uses a
descriptive approach to model formulation and, thus, heavily
relies on data-related assumptions. One common assumption is
the independent and identical distribution of variables (i.i.d.).
The present research paper discusses the effect of violating i.i.d.
in Bayesian modeling for two types of parameter estimation.
The estimated parameters are the mean for one type and the
correlation for the other. The effect of the violation was tested
using synthetically generated data under two conditions: (i) the
i.i.d. assumption was satisfied, and (ii) the i.i.d. assumption was
not satisfied. The analysis of the obtained results showed that
some models were more susceptible to the violation of i.i.d. than
others, given the inconsistency between the assumptions used in
the model formulation and the features of the data.

Index Terms—Bayesian Statistical Modeling; Independent and
Identically Distributed Random Variables; Parameter Estimation

INTRODUCTION

Any statistical analysis method is based on assumptions
about the data, and the outcomes of the analysis method be-
come less reliable once the proposed assumptions are violated
(Sawada 2023). It is, therefore, essential to understand the
assumptions and how robust the analysis is to the violation
of the assumptions beforehand to avoid misleading results.
Various studies have tested the robustness of statistical analysis
methods to the violation of assumptions, like the normality
of distribution (Khan and Rayner 2003; Gottardo and Raftery
2009) and equal variance of distributions across conditions
(Kasuya 2001; Ruscio and Roche 2012). While the extent
of assumption violation is discussed differently with respect
to approach, the common ground is that the violations and
respective effects should be viewed as matters of relative
degree, given that, in practice, it is hard to adhere to assump-
tions strictly, and yielded violations are of quantitative nature.
(Bergh, Wagenmakers, and Aust 2023)

Rooted in the Bayes theorem, Bayesian Statistics discusses
the probability of an event based on prior information about
conditions given the observed data. (Eddy 2004) As a de-
scriptive method of model formulation, Bayesian statistical
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modeling heavily relies on data-related assumptions. Given
the specific features of the data, Bayesian models can be
formulated accordingly to accommodate those features. Thus,
assumptions for analysis emerge from the model formulation
and give a relative freedom to reformulate models based
on the data assumptions or introduce assumptions about the
data aligning with the chosen model (Sawada 2023). This
strength of Bayesian models requires careful consideration of
assumption adjustments to avoid cases where data violates the
assumptions in the proposed model, which can subsequently
affect the analysis outcome and the reliability of results.

Sawada (2023) carried out the analysis of a single case
using Bayesian modeling and discussed the effect of violating
data assumptions on the results of an analysis. Aside from the
already mentioned assumption of equal variance across condi-
tions, the study reflected on yet another common assumption
- the independent and identically distributed (i.i.d.) random
variables. The idea behind i.i.d. implies that each random
variable has the same probability distribution as the others
and that all are mutually independent. Sawada (2023) showed
that the observed violations of assumptions (unequal variance
across participants and interdependence between means and
variances) could have caused biased analysis results.

In the present research paper, the focus was on assessing
the effect of violating the assumption of independent and
identically distributed (i.i.d.) random variables in Bayesian
statistical modeling. For estimating the mean of a distribution
and for estimating the correlation coefficient between two sets
of random variables, I implemented four Bayesian models to
estimate the population mean and three models to estimate
the correlation coefficient and tested how their outputs were
affected by the violation of the assumption. These models were
tested under two conditions in Monte Carlo simulations: (i) the
assumption of i.i.d. was satisfied, and (ii) the assumption was
not satisfied. The estimated parameters from the models were
then compared between these conditions to assess the effect of
the violation on the results of the implemented models. Based
on the results of the simulation experiment, the robustness of
Bayesian models to the violation of i.i.d. is discussed.



METHODOLOGY

The R programming language was chosen for analysis, and
JAGS models (Just Another Gibbs Sampler) (Plummer 2003)
were implemented and interfaced in RStudio by utilizing the
package rjags.

Mean

Consider the following hypothetical scenario: the mean
performance of people in a task is estimated by testing multiple
participants. For instance, IQ or visual acuity measurements.
Each person is tested in multiple trials, and the average
of the trials of the person is computed. Subsequently, the
population mean is estimated by computing the average across
the individual averages of the participants. The data from
such an experiment can be analyzed using the following four
Bayesian models (Appendix), formulated by revising models
from Lee and Wagenmakers (2013).

e Model-A considers each participant’s individual mean
and standard deviation. Trials of the individual partici-
pants are regarded as random samples from distributions
with the common mean but with different standard devi-
ations across the participants.

e Model-B is similar to Model-A, but it considers a com-
mon standard deviation across participants, and individual
standard deviations do not affect the estimation.

o Model-C has a hierarchical structure; each participant’s
data is drawn from a common population mean with
individual variation around that mean.

e Model-D is similar to Model-C, but it also considers
participant-specific standard deviation, assuming each
participant has a unique mean and standard deviation.

To generate the synthetic data for mean-estimating models,
the generate_data custom function was implemented that
iteratively generated participant means and standard deviations
until the correlation between parameters fell below a threshold
value (0.05 in the current case), ensuring relative indepen-
dence. For each participant, trial data was generated using
the custom rnorm_revnorm function (generating samples
from a standard normal distribution, standardizing, and then
reversing the normalization process), resulting in two sets
of trial data: one with almost no correlation (data_nocorr)
and another with almost perfect correlation (data_perfcorr,
after sorting means and standard deviations in ascending
order). Furthermore, two additional datasets that stored the
separate mean and standard deviation values for almost no
correlation (data_sep_nocorr) and almost perfect correlation
(data_sep_perfcorr) conditions were generated.

The simulation stage for Mean estimation was automated
with the custom function simulate_mean, carrying out 30
MC (Monte-Carlo) simulations for four models under two
conditions for data with respect to the chosen parameter. The
design of the simulation allows for three parameter choices:

1. Number of participants (by default 15): 5, 15, and 45.
2. Number of trials (by default 10): 5, 10, 20, and 40.

3. Standard deviation in normal distribution for standard
deviations (by default 1.0): 0.2, 1.0, and 2.0.

Each simulation would consider a set of values for the cho-
sen parameter, generate data utilizing the already mentioned
custom function for data generation, run the four Bayesian
JAGS models with respective sets of initial values and data
input (data_sep_nocorr & data_sep_perfcorr for Models A
& B, data_nocorr & data_perfcorr for Models C & D), and
store the estimated values of population mean (mu_mu) from
model output in tabular format. The obtained three data frames
storing simulation results with respect to three parameters were
then saved to the Rdata file for further analysis.

Correlation

Consider another hypothetical scenario: a set of values for
two parameters is generated to estimate their correlation. For
instance, the linear relationship between 1Q and visual acuity
measurements. This time, the data from such an experiment
can be analyzed using the following three Bayesian models
(Appendix), formulated by revising models from Lee and
Wagenmakers (2013).

e In Model-1, observations of the two variables are as-
sumed to follow a bivariate normal distribution, assuming
a symmetric correlation structure between the variables.

o Model-2 extends Model-1 by adding a measurement error
to the observed variables using lambda error, assuming
that the observed variables (x) are the adjusted measure-
ments of the true variables (y) with known and fixed
measurement errors.

o Model-3 further extends Model-2 by allowing for differ-
ent measurement errors for each variable. Nine scenarios
of variable dependency for measurement errors are con-
sidered.

To generate the synthetic data for correlation-estimating
models, the generate_data custom function was im-
plemented to generate multivariate normal data (dataX &
dataY) with a covariance matrix based on specified corre-
lation coefficients and marginal variances. Additionally, a
generate_individual_lambdas custom function was
implemented to generate individual error measurement errors
for the third model under nine scenarios of data dependency.
Specifically:

o Dependency on dataX: Scenario 1-A, where the error
parameter along the x-axis depends on dataX while the
error parameter across the y-axis is constant, and vice
versa for Scenario 1-B.

o Total dependency on dataX: Scenario 2, where the error
parameters along the x-axis and y-axis depend on dataX.

o Dependency on dataY: Scenario 3-A, where the error
parameter along the x-axis depends on dataY while the
error parameter across the y-axis is constant, and vice
versa for Scenario 3-B.

o Total dependency on dataY: Scenario 4, where the error
parameters along the x-axis and y-axis depend on dataY.



o Dependency on dataXdataY: Scenario 5-A, where the
error parameter along the x-axis depends on the product
of dataX and dataY, while the error parameter across the
y-axis is constant, and vice versa for Scenario 5-B.

o Total dependency on dataXdataY: Scenario 6, where the
error parameters along the x-axis and y-axis depend on
the product of dataX and dataY.

The simulation stage for Correlation estimation was auto-
mated with the custom function simulate_correlation,
carrying out 15 MC (Monte-Carlo) simulations for three
models and the third one with 9 scenarios for measurement
error with respect to the chosen parameter. The design of the
simulation allows for four parameter choices:

1. Number of points (by default 500): 50, 100, and 500.

2. Values of lambdas for marginal variances (by default
[1.0, 1.0]): [0.3, 2.0], [1.0, 1.0], and [2.0, 0.3].

3. The range of standard deviation in uniform distribution
for measurement error dependency (by default [0.01,
0.2]): [0.01, 0.1] and [0.01, 0.2].

4. Correlation coefficient in data generation (by default
0.5): 0.2, 0.5, and 0.8.

Each simulation would consider a set of values for the
chosen parameter, generate data utilizing the already men-
tioned custom function for data generation, and run the three
Bayesian JAGS models (along with scenarios for model 3)
with respective sets of initial values and data. The four data
frames that were obtained storing the estimated values of the
correlation coefficient (r) with respect to four parameters were
then saved to the Rdata file for further analysis.

RESULTS
Mean

For the visual analysis of simulation results for each of
the three parameters, two variants of plots were generated:
(1) scatterplot of estimate values in each simulation, and (ii)
scatterplot with error bars of the mean value of estimate across
the simulations faceted by models and colored by correlation

type.

Number of Participants: The results of simulations with
respect to the number of participants are plotted in Figure 1.
The results show that Models B and C are less affected by the
violation of i.i.d since the blue and orange dots, representing
estimates for correlated and uncorrelated data, respectively, are
densely centered around close values of the population mean.
On the other hand, Models A and D, especially A, are visibly
affected by the violation of i.i.d, yielding estimates centered
around more distant population mean values.

Notably, with more participants, the effect of violation for
the affected models becomes more evident; we can see how
the means for estimates for Models A and D are rationally
closer when 5 participants are tested compared to the case
with 45 participants.
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Fig. 1. (a) Scatterplot of estimated values for mean and (b) Scatterplot of the
mean of estimated values for mean with error bars across simulations with
respect to the number of participants, faceted by four models and colored by
correlation type. In subfigure (a), the grey lines connect observations from
the same simulation.
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Fig. 2. (a) Scatterplot of estimated values for mean and (b) Scatterplot of

the mean of estimated values for mean with error bars across simulations
with respect to the number of trials, faceted by four models and colored by
correlation type. In subfigure (a), the grey lines connect observations from
the same simulation.



Number of Trials: The results of simulations with respect to
the number of trials (Figure 2) support the previous observa-
tion that Models B and C are less affected by the violation of
i.i.d than Models A and D, especially Model A. Interestingly,
unlike the previous case with number of participants, with
more trials, the effect of violation for Model D becomes less
apparent, and the general pattern shows how the increased
amount of trials yields more stable value across three out of
four models, with estimates across simulations getting more
densely centered.

Standard Deviation Value: Finally, the results of simulations
with respect to the value of standard deviation in normal
distribution for standard deviations (Figure 3) strengthen the
insight that Models A and D are more affected by the violation
of i.i.d than Models B and C. Notably, similar to the case with
the number of participants, with a wider range of uniform
distribution of standard deviation, the effect of violation for
Model D becomes more apparent.
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Fig. 3. (a) Scatterplot of estimated values for mean and (b) Scatterplot of the
mean of estimated values for mean with error bars across simulations with
respect to the value of standard deviation, faceted by four models and colored
by correlation type. In subfigure (a), the grey lines connect observations from
the same simulation.

The results of simulations estimating the population mean
with respect to three parameters show that the implemented
Bayesian models are not always robust to violations of i.i.d in
data. Despite the similarity of Models A and B, the mean and
the standard deviation are estimated individually in Model B,
not affecting each other, and Model A introduces individual
standard error directly to mean estimation, which makes Model
A a reliable example of a non-robust model to assumption
violation.

Correlation

For the visual analysis of simulation results for each of
the four parameters, two variants of plots were generated:
(1) scatterplot of estimate values in each simulation, and (ii)
scatterplot with error bars of the mean value of estimate across
the simulations faceted by parameter values and colored by
models.

Number of Points: The results of simulations with respect
to the number of points (Figure 4) show that with the increase
in the number of points, results across models and simulations
stabilize and are closely centered around the initial correlation
coefficient input for data generation. Furthermore, with the
increase in the number of points, the mean estimate values
across simulations with respect to models more strictly show
which models tend to overestimate the correlation coefficient.
Specifically, Model 3 with Scenario 6 (total dependency on
the product of both dataX and dataY) gives the most different
estimate of correlation.
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Fig. 4. (a) Scatterplot of the mean of estimated values for correlation

with error bars and (b) Scatterplot of estimated values for correlation across
simulations with respect to the number of points, faceted by parameter value
and colored by model. In subfigure (b), the grey lines connect observations
from the same simulation.

Values of lambdas for marginal variances: The results of
simulations with respect to the values of lambdas for marginal
variances (Figure 5) show that when marginal variances are
equal, the values of estimates across simulations in Model 3
are relatively close for dependency-wise paired scenarios. In
contrast, in the cases when either of the marginal variances is
greater, the estimates by paired scenarios vary in favor of the
greater variance.
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Fig. 5. (a) Scatterplot of the mean of estimated values for correlation
with error bars and (b) Scatterplot of estimated values for correlation across
simulations with respect to the values of lambdas for marginal variances,
faceted by parameter value and colored by model. In subfigure (b), the grey
lines connect observations from the same simulation.

The distribution range of standard deviation for measure-
ment error dependency: The results of simulations with re-
spect to the range of standard deviation in uniform distri-
bution for error measurement in Figure 6 show that with a
broader range of uniform distribution for the measurement
error, the average estimate of correlation across the models
leads to overestimation compared to the narrower one, where
average values not only underestimate the correlation between
parameters but are densely distributed.

Correlation coefficient in data generation: Finally, the
results of simulations with respect to the correlation coefficient
in data generation in Figure 7 show that with a greater initial
value of correlation coefficient in data generation, the average
estimates of correlation across dependency-wise paired sce-
narios for Model 3 tend to get closer to each other. Moreover,
with a greater correlation coefficient, estimated values across
simulations become relatively more stable.

The results of simulations estimating the correlation be-
tween two variables with respect to the four parameters show
that the Bayesian models implemented with and without the
consideration of marginal variances of variables yield varying
results and are affected by the parameter changes in data
formulation. This part of the analysis shows that the parameter
used for assessing the robustness of models to the violation of
ii.d - correlation, on its own, is subject to a mismatch in the
data vs. model formulation, causing an underlying violation
of i.i.d for individual variables.
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with error bars and (b) Scatterplot of estimated values for correlation across
simulations with respect to the range of standard deviation in uniform
distribution for error measurement, faceted by parameter value and colored
by model. In subfigure (b), the grey lines connect observations from the same
simulation.
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Fig. 7. (a) Scatterplot of the mean of estimated values for correlation

with error bars and (b) Scatterplot of estimated values for correlation across
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CONCLUSION

Statistical modeling goes hand in hand with formulating and
adjusting data-related assumptions. Working with Bayesian
models provides the flexibility of assumption adjustment, the
misuse of which can result in assumption violation, affecting
the reliability of obtained results.

The present research paper discussed the effects of violating
ii.d in Bayesian statistical modeling for the two types of
parameter estimation. It showed that the results of the simula-
tion could be affected by the violation of i.i.d. depending on
how Bayesian statistical models were formulated. The models
were formulated to estimate the mean and the correlation
under different assumptions regarding the data. Based on
the obtained results, I found that some models are more
susceptible to the violation of i.i.d. While the effects across
models might have been limited, the contrast of results was
enough to doubt the robustness of models. The cause of such
behavior was the mismatch of assumptions used in model
formulations, which were also subsequently violated.

The verdict is simple: The quest for data analysts is to be
able to identify the underlying assumptions to mitigate the
risks of inaccurate model selection in a thorough process of
data scrutinization before performing the analysis.

APPENDIX

Mean

Figures A1-A4 show the graphical representations of four
Bayesian statistical models for mean estimation, formulated by
revising the models from Lee & Wagenmakers (2013, p. 54
- 59). Note that, to avoid introducing extra bias to models
through individually adjusted priors for the simulations, “un-
informative” priors with uniform distribution were used.

Figure A1l: Graphical model for the structure of Model-
A. The parameters mu_i and sigma_i, shaded in orange, refer
to the data input to the model. The single-bordered circles
represent variables sampled from respective priors.
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Figure A2: Graphical model for the structure of Model-
B. The parameters mu_i and sigma_i, shaded in orange, refer
to the data input to the model. The single-bordered circles
represent variables sampled from respective priors.
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Figure A3: Graphical model for the structure of Model-C.
The parameter x_ij, shaded in orange, refers to the data input
to the model. The single-bordered circles represent variables
sampled from respective priors.
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Figure A4: Graphical model for the structure of Model-D.
The parameter x_ij, shaded in orange, refers to the data input
to the model. The single-bordered circles represent variables
sampled from respective priors, and the double-bordered cir-
cles represent variables computed from other variables.
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Correlation

Figures A5-A7 show the graphical representations of three
Bayesian statistical models for correlation estimation, formu-
lated by revising the models from Lee & Wagenmakers (2013,
p. 60 - 63).

Figure AS: Graphical model for the structure of Model-1.
The parameter x_i, shaded in orange, refers to the data input
to the model. The single-bordered circles represent variables
sampled from respective priors. Bold variables indicate a pair
of variables.
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Figure A6: Graphical model for the structure of Model-
2. The parameters x_i and lambda_error, shaded in orange,
refer to the data input to the model. The single-bordered
circles represent variables sampled from respective priors.
Bold variables indicate a pair of variables.
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Figure A7: Graphical model for the structure of Model-
3. The parameters x_i, lambdaerror_x, and lambdaerror_y,
shaded in orange, refer to the data input to the model.
The single-bordered circles represent variables sampled from
respective priors. Bold variables indicate a pair of variables.
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