
An Oberon-based Data Frame Tool:

Balancing Simplicity and Performance

American University of Armenia

Capstone Project submitted in fulfillment of the requirements for the degree of BS in Data Science

Author: Irena Torosyan

Supervisor: Norayr Chilingarian

May 9, 2024

Abstract

This paper introduces a lightweight, user-friendly, and efficient command-line tool for interacting with tabular data
and dataframes, developed using the Oberon programming language. The tool addresses the challenges of existing
solutions that often trade-off between simplicity and functionality. The Oberon-based data frame tool offers a
balance between these aspects, while maintaining a focus on ease of use and performance.

The design choices prioritize efficiency and flexibility. The core Frame module utilizes a generic data structure to
handle various file formats without compromising core functionalities. Loaders and writers are implemented as
separate modules, enabling format-agnostic data handling. Additionally, the stats module offers basic statistical
analysis on data frames, demonstrating the tool’s utility for data exploration tasks. Performance analysis reveals
that the Oberon-based tool outperforms Python’s Pandas library and the csvkit suite in terms of execution speed,
highlighting the benefits of native code generation and strong typing offered by Oberon.

Keywords: Oberon, data frame, CSV, command-line tool, data exploration, performance analysis

Introduction

In today’s data-driven world, the ability to efficiently work with tabular data is needed across various domains,
ranging from scientific research to business analytics. Among the variety of file formats used to store structured
data, CSV (Comma-Separated Values) files are among the most used. However, despite their widespreadness, and
simplicity of the format, efficiently managing and manipulating CSV files, along with their associated dataframes,
can pose significant challenges.

Existing solutions for interacting with CSV files often come with trade-offs. While some tools offer powerful
features and extensive functionality, they often suffer from complexity, resource overhead, or a steep learning curve.
Conversely, simpler tools may lack essential functionalities or fail to provide an intuitive user experience.

Motivated by the need for a lightweight, user-friendly, and efficient tool for interacting with tabular data, this paper
introduces an Oberon-based solution, designed to address these challenges. Leveraging the simplicity and efficiency
of the Oberon language, this tool aims to provide a streamlined workflow for reading, storing, writing, performing
simple modifications, and getting statistical inferences on tabular data.

This paper presents an exploration of the landscape of existing solutions for working with CSV files, highlighting
their strengths, limitations, and areas for improvement. The reasons behind choosing the Oberon language as the
foundation are discussed, emphasizing its suitability for programming tasks and its potential to deliver a lightweight
yet powerful tool.

The aim of this paper is to showcase the practical utility of the tool, while also discussing its potential for further
development and expansion.

In the subsequent sections, we delve deeper into the technical details of the project, including its design, implemen-
tation, usage examples, and comparisons with existing tools.

1



Related Work: A Landscape of Tabular Data Exploration Tools

The desire to manipulate and analyze tabular data has a long history, with tools evolving to meet the needs of
increasingly complex datasets and user demands. Visicalc, released in 1979, is considered a pioneer in this space.
Its strength lay in its simplicity, allowing users to interact with spreadsheets through a user-friendly interface [1].
This simplicity and focus on ease-of-use serves as a core inspiration for the development of the Oberon-based data
frame tool.

Modern data science offers a rich ecosystem of tools for working with tabular data. Popular options include R’s
data.frame, Python’s pandas library [2], and the csvkit suite [3]. These tools offer a variety of functionalities, from
data cleaning and transformation to complex statistical analysis.

pandas, perhaps the most widely used data analysis library in Python, excels in its flexibility and rich set of
features. It allows for efficient data manipulation, advanced indexing, and powerful data cleaning capabilities.
Pandas performs well when opposed to other popular tools for statistical data analysis and has been a very promising
project since a decade ago [4] (McKinney, 2010). However, pandas can be memory and time intensive for very large
datasets, and its extensive functionality can come at the cost of a steeper learning curve.

csvkit, on the other hand, prioritizes speed and efficiency for working with CSV files. Its command-line interface
offers a range of utilities for interacting with tabular data. While powerful for basic tasks, csvkit is implemented in a
statically typed interpreted language which slows down its performance significantly. While the choice of python is
justified in case of pandas, a simpler solution like csvkit, made to be used for simpler scenarios, can be implemented
more efficiently without any loss of convenience.

Beyond these two prominent examples, a variety of other tools cater to specific needs. For instance, dplyr in R
provides a functional programming approach to data manipulation.

The choice of tool ultimately depends on the specific needs of the user and the characteristics of the data. This
Oberon-based data frame tool aims to strike a balance between the simplicity of and the efficiency of native code
generation, offering a fast and easy-to-use solution for quick data exploration tasks.

Data Frame Design

The core component of the Oberon-based tool is the Frame module, which provides a generic representation of
a data frame. This design choice allows the tool to work seamlessly with various file formats without requiring
modifications to the core functionality.

To optimize memory usage and facilitate later type checking, column names are stored separately from the data
itself. This separation is reflected in the code by defining two distinct pointer types: columnName for storing column
names as character arrays and cnames for referencing an array of columnName elements. Hence, column names
themselves are not cells. As the column names are associated with a frame instance, the frmDesc record within the
frame module holds a reference to the cnames type, denoted by columnNames.

The Frame module supports two basic data types for cells: integers (intCell) and strings (strCell). Both data
types inherit from a common abstract base type cellDesc. This design promotes code reusability and simplifies
the implementation of future data type extensions.

Figure 1: “sample output when printing a frame with no column names”

Key Design Choices:

2

http://www.danbricklin.com/visicalc.htm
https://pandas.pydata.org/
https://csvkit.readthedocs.io/en/latest/
http://conference.scipy.org.s3.amazonaws.com/proceedings/scipy2010/pdfs/mckinney.pdf


Figure 2: “sample output when printing a frame with column names ‘1’, ‘2’, ‘3’ ”

• Heterogeneous Columns: The Frame allows columns to be heterogeneous, meaning cells within a single
column can have different data types or be empty. This flexibility is achieved by using a generic cell* pointer
type to reference cell data within the matrix of the frmDesc record. During data access, the code checks the
specific cell type before performing operations like printing the value. This flexibility avoids unnecessary data
conversions and maintains the integrity of the data during analysis. For instance, a column containing both
numerical values and text representations can be stored efficiently without forcing a conversion to a single type.
This design proves particularly advantageous in scenarios where, for instance, one seeks to derive statistical
inferences solely from numerical values within a column. Enforcing uniform typing across the column would
result in all cells being treated as strings, thereby complicating the further analysis process.

• Type Checking: While the design allows for heterogeneous columns, the Frame module can perform checks
to ensure data type consistency before specific operations are applied. This approach avoids unnecessary type
conversions during data exploration but ensures data integrity for calculations.

• Separate Data Loading Logic: The Frame module provides a generic interface for data loading through
the Tloader procedure type. This allows for implementing different data loader functions specific to various
file formats (e.g., CSV, Excel) without modifying the core frame functionality. The setLoader procedure
assigns a specific loader implementation to a frame instance.

• Object-Oriented Design Considerations: One of the reasons why the implementation is passing the
instance as an argument to a procedure is clarity. It makes the code clearer because it explicitly states which
object the procedure is operating on. This can improve readability and maintainability. While this approach
requires more typing, alternative solutions may cause noticable performance overhead due to virtual method
tables (VMTs) [5] (Chapman, 2024). Additionally, the compiler might be able to optimize the code better
when it knows exactly which object the procedure is working on.

Future Enhancements:

The current implementation lays a solid foundation for future development. The design allows for:

• Extensible Data Types: The use of an abstract base class (cellDesc) facilitates the addition of new data
types (e.g., floating-point numbers, dates) without significant code modifications.

Loaders and Writers

This section discusses the design of loaders and writers, emphasizing their role in achieving format agnostic data
handling for the data frame.

Current Implementations: ReadCSV

The readcsv module serves as the current implementation for loading data from CSV files. Here’s a breakdown of
its key characteristics:

• Automatic Schema Discovery: The discoverAndSetSize procedure automatically determines the frame’s
size (number of rows and columns) by analyzing the CSV file.

3

https://chapmanworld.com/the-costs-and-benefits-of-interfaces/


Figure 3: definition of Frame

4



• Column Name Handling (Optional): The ReadCSVFile procedure can handle files with column names
in the first row. These names are stored in the frame’s columnNames property.

• Data Type Inference: During data loading, readcsv infers the data type for each cell.

WriteCSV: Saving Data Frames

The writecsv module provides functionality to save a data frame to a CSV file. It mirrors the structure of readcsv
and exhibits the following properties:

• Column Name Handling: If the frame has column names, they are written as the first row in the output
file.

• Data Type Handling: writecsv converts data from the frame’s cells into a string representation suitable
for CSV format.

Future Expansion and Format Agnosticism

The current design allows for the addition of new loader and writer modules without affecting the core frame
functionality. This modular approach promotes flexibility and simplifies the process of supporting various data
formats in the future. Additionally, with the addition of new loaders and writers it will also be possible to easily
convert file formats using one file format loader and a different file format writer with no added complexity.

Figure 4: “sample partial output when printing a frame read from country_full.csv

Stats Module for Data Frame Analysis

The stats module provides functionalities for performing basic statistical analysis on a data frame. It can be used
to calculate various statistics for individual columns or the entire frame.

Key Features:

• Column-wise Analysis: The current implementation allows analyzing data distribution, data types, and
various statistical properties for each column in the frame.

• Data Type Inference: As mentioned above, the inference of the column type may be helpful in specific
scenarios. As statistics rely on cell types, colTypeCellCnt is implemented to infer the data type within a
column by examining cell values.

• Combined Functionality: colStats offers a comprehensive analysis of a column, including data type,
presence of NIL values, and calculations like sum, mean, median, minimum, maximum, and mode for integer
data.

• Separate Statistics: If not all statistical information is necessary, the possibility of acessing specific statistics
without the added complexity of calculating all others is available.

• Efficiency Considerations: The design avoids redundant traversals of the data. colStats calculates all
statistics in a single pass through the column, improving efficiency.

5



• Frame-wise Analysis: frmStats provides a convenient way to obtain a summary of all columns within a
frame.

Additional Considerations:

• Currently, the module focuses on integer data types. Future enhancements could include support for additional
data types.

Figure 5: sample output of the statistical inference about select columns of country_full.csv

Performance Analysis of Statistical Tools on Data Frames

This analysis compares the performance of statistics measures on frame, Pandas (python 3.8 and 3.11 versions),
and csvkit for statistical analysis on data frames. The tests were conducted on two datasets:

• country_full.csv: A relatively small file with 11 columns and around 250 rows.
• people-10000.csv: A larger dataset with 5 columns and around 10000 rows.

The tests were conducted 10 times each and the mean system times were used for the comparison.
Key Findings:

• frame stats outperforms both Pandas versions in all test cases. It consistently achieved the fastest
execution times. The average system time on country_full.csv is 154 times faster than pandas on python
3.11 and 122 times faster than pandas on python 3.8. The average system time on people-10000.csv is 18
times faster than pandas on python 3.11 and 13 times faster than pandas on python 3.8.

• csvkit is generally faster than Pandas but slower than frame stats It exhibited reasonable performance
on both datasets, except for the people-10000.csv with Python 3.8, where csvkit encountered an error and
didn’t produce any results. The average system time on country_full.csv is 42 times faster than csvkit on
python 3.11 and 75 times faster than csvkit on python 3.8. The average system time on people-10000.csv
is 5 times faster than csvkit on python 3.11.

6



• Python version appears to have minimal impact. There were no significant performance differences
between Python 3.8 and 3.11 for either Pandas or csvkit. Nevertheless, an interesting fact may be observed
with pandas performance. With regular core CPython improvements [6] and introduction of Just-in-Time
(JIT) Compilation [7], it was expected to see a significant increase in efficiency, but in case of this particular
usage of pandas, quite the opposite may be observed. Pandas does not directly utilize JIT, so while the
possibility is there, no increase in efficiency is noticeable. While the difference is not extreme, a possible
reason for a more efficient work of pandas on python 3.8 may be that pandas relies on underlying C libraries
that have specific compatibility optimizations for Python 3.8.

Reasons for Performance Differences:

Native Code vs. Interpreted Languages:

• Oberon: Being a compiled language, Oberon translates the code into machine code specific to the processor
architecture. This native code executes directly on the hardware, making the tool very efficient.

• Python: Python is an interpreted language. The code is first translated into bytecode at runtime by the
Python interpreter. The interpreter then executes this bytecode line by line. This interpretation adds an
overhead compared to directly running native code.

Strong Typing in Oberon:

• Type Checking: Oberon is a strongly typed language, meaning variable types are defined and enforced at
compile time. This allows for better optimization by the compiler, as it knows the exact data types being
manipulated.

I’d like to emphasize the significant role that static typing played in streamlining the development process. By
explicitly defining variable types, the compiler catches potential errors early on, preventing runtime issues and
saving valuable debugging time. This focus on type safety minimizes the chance of logic errors slipping through
unnoticed, leading to a more robust and reliable codebase.

As the project grows and functionalities increase, maintaining a clean and efficient codebase becomes crucial.
Oberon’s static typing provides a safety net, allowing it to develop with confidence and focus on core functionalities.
Compared to the experience with interpreted languages, where errors often manifest during runtime, Oberon’s
upfront type checking has been a refreshing change. It’s a pleasure to work with a language that prioritizes
catching errors early, leading to a smoother development cycle.

• Python: Python is dynamically typed, meaning variable types are determined at runtime. This flexibility
can sometimes lead to inefficiencies as the interpreter needs to perform checks during execution to ensure type
compatibility.

• Data Type Focus: Pandas offers comprehensive functionality but the basic statistics prioritize numerical
data analysis. Frame stats and csvkit might be more efficient for mixed data types present in these tests.

Additional Considerations:

• CPU Usage: While system times provide a good performance indicator, CPU usage details could offer
further insights.

Frame stats used the least amount of cpu resources while performing the fastest in all tests. Adiitionally, we
can notice that pandas used multiple threads. While this leads to potentially faster execution on large datasets,
the Oberon-based tool achieves multiple times faster performance with a single thread. This is attributed to the
efficiency of native code generation and the focus on core functionalities. The utilization of a single-threaded
approach, prioritizing code simplicity and minimal resource overhead, is well justified based on the test results.

In the appendix the details of all testings are provided showing concrete details of each experiment.

7

https://docs.python.org/3/whatsnew/3.11.html%5D
https://numba.pydata.org/numba-doc/latest/index.html
https://numba.pydata.org/numba-doc/latest/index.html


Tool Usage and Accessibility

The tool developed for this project leverages the Vishap Oberon compiler (voc) [8]. This compiler generates C code,
enabling efficient execution on various platforms.

Current Implementation:

• C Code Output: The Vishal Oberon compiler uses a C backend to translate Oberon code into machine
code for the target platform. This approach offers several benefits:

– Platform Independence: C code can be compiled and run on various operating systems with minimal
modifications.

– Performance: C code often executes faster than interpreted languages like Python, especially for com-
putationally intensive tasks.

Accessibility Considerations:

• Python Wrapper: While the C code offers advantages, it creates a barrier for users primarily working in
the Python ecosystem. To address this, we consider developing a Python wrapper for the tool.

Benefits of a Python Wrapper:

• Wider Audience: A Python wrapper would significantly increase the tool’s accessibility for users familiar
with Python for data analysis.

• Integration with Existing Workflows: Users could seamlessly integrate the tool’s functionalities into their
existing Python-based data analysis pipelines.

Conclusion

This paper presented the design and implementation of a novel command-line tool for interacting with CSV files
and dataframes. Developed using the Oberon programming language, the tool prioritizes a balance between ease
of use, efficiency, and core functionalities for data exploration tasks.

The key strengths of the tool lie in its design choices. The generic data structure of the Frame module facilitates
format-agnostic data handling, while separate loader and writer modules enable flexible support for different file
formats. The stats module provides basic statistical analysis capabilities, demonstrating the tool’s usefulness for
initial data exploration. Performance analysis revealed that the Oberon-based tool outperforms popular Python
libraries like Pandas and the csvkit suite, highlighting the advantages of native code generation and strong typing
offered by Oberon.

Looking forward, this project presents a solid foundation for further development. The design allows for the incorpo-
ration of additional data types, enhanced statistical functionalities, and support for new file formats. Additionally,
the development of a Python wrapper could significantly broaden the user base and integrate the tool seamlessly
into existing Python-based data analysis workflows. Overall, the Oberon-based data frame tool offers a compelling
alternative for users seeking a lightweight, efficient, and user-friendly solution for data exploration tasks involving
CSV files.

Appendix

test comparisons

8

https://github.com/vishaps/voc


Figure 6: “results of testing on country_full.csv
9



Figure 7: “results of testing on people-10000.csv
10



Resources

[1] {#references-1} Bricklin, D. J., & Frankston, W. C. (n.d.). VisiCalc: Information from its creators, Dan Bricklin
and Bob Frankston. http://www.danbricklin.com/visicalc.htm

[2] pandas: a python data analysis library. https://pandas.pydata.org/

[3] csvkit: a suite of command-line tools for working with CSV files. https://csvkit.readthedocs.io/en/latest/

[4] McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in
Science Conference, (Vol. 4, pp. 56 - 61).]). http://conference.scipy.org.s3.amazonaws.com/proceedings/scipy2010/pdfs/mckinney.pdf

[5] Chapman, C. (2024, February 22). The costs and benefits of interfaces. https://chapmanworld.com/the-costs-
and-benefits-of-interfaces/

[6] Python Documentation. What’s New in Python 3.11. https://docs.python.org/3/whatsnew/3.11.html]

[7] Numba: A just-in-time compiler for Python. https://numba.pydata.org/numba-doc/latest/index.html

[8] voc: Vishap Oberon Compiler of the Oberon-2. https://github.com/vishaps/voc

[9] Oakwood Compiler Development Group. (1995, October 20). The Oakwood Guidelines for Oberon-2 Compiler
Developers. http://www.math.bas.bg/bantchev/place/oberon/oakwood-guidelines.pdf

[10] Wirth, N. (2015, rev. 5.10.2015). Programming: A tutorial: A derivative of programming in Modula-2 (5th
ed.).

11


	An Oberon-based Data Frame Tool:
	Balancing Simplicity and Performance
	Abstract
	Introduction
	Related Work: A Landscape of Tabular Data Exploration Tools
	Data Frame Design
	Loaders and Writers
	Stats Module for Data Frame Analysis
	Performance Analysis of Statistical Tools on Data Frames
	Tool Usage and Accessibility
	Conclusion
	Appendix
	Resources


