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Abstract—As the necessary tests for the preliminary assessment
of drug carcinogenicity are time-consuming and expensive, the
methods to predict their results using machine learning models
become more and more popular. However, it is often the case that
the dataset with labeled molecules is small. We try to address the
problem by training the model on several tasks simultaneously
using the one-primary multiple-auxiliaries approach which en-
ables us to leverage other datasets besides the one for the primary
task thus solving the problem of small datasets. We show that
the results for in-vivo rat carcinogenicity improve when using
carefully chosen auxiliary tasks.

I. INTRODUCTION

Toxicity assessment is an essential component of the drug
development process, integral to ensuring that chemical com-
pounds are safe for human use before they reach clinical trials.
This process involves a comprehensive series of evaluations,
both in vitro and in vivo. In vitro tests are conducted on a
variety of biological substrates, including cell cultures, micro-
bial cultures, and tissue samples. These tests are crucial for
initial toxicity screenings and help in identifying any cytotoxic
or microbiologically adverse effects of the compounds under
study [1]. In vivo testing, conducted on animal models, further
assesses the pharmacokinetics and pharmacodynamics of the
drugs, providing a detailed understanding of their metabolism,
distribution, and potential adverse effects on living organisms.

One of the primary goals of these assessments is to ensure
patient safety. By identifying potentially harmful substances
early in the drug discovery process, researchers can prevent
these compounds from advancing to human trials [2]. This not
only protects potential trial participants but also helps pharma-
ceutical companies avoid the financial and reputational costs
associated with late-stage drug failures. Late-stage failures
are particularly expensive due to the vast amounts of money
already invested in the drug’s development. Carcinogenicity
tests are a major aspect of in vivo evaluations. These tests are
designed to determine whether a substance could cause cancer
in a living organism. Typically lasting two years, these tests are
both time-intensive and costly, with expenses ranging from two
to four million dollars per compound. They also require the
use of several hundred animals, raising ethical and logistical
concerns.

In recent years, there has been significant progress in the
field of machine learning, which has had a transformative
impact on the drug discovery process. Advancements in deep
learning, particularly the development of algorithms based
on graph theory, have revolutionized how drug screenings
are conducted. These technological improvements allow for

the prescreening of large libraries of compounds, efficiently
identifying those that are likely to be toxic or carcinogenic.
This method significantly reduces the number of compounds
that need to proceed to more costly and ethically challenging
in vivo testing [3]–[6].

Graph Neural Networks are at the forefront of this research.
These networks are capable of predicting molecular behavior
based on the structural information encoded within the graph
representation of molecules [6]–[12].

Another promising area of research is the application of
multitask training approaches. In multitask learning, a single
model is trained on multiple tasks simultaneously [13], [14].
This approach can significantly enhance the model’s predictive
accuracy and efficiency, potentially leading to better outcomes
in drug safety evaluations and a reduction in the reliance on
animal testing.

As the field of toxicology continues to evolve, the integra-
tion of machine learning into traditional processes is proving
to be invaluable. Not only does this integration enhance the
efficiency and accuracy of toxicity assessments, but it also
offers the potential to drastically reduce the costs and ethical
concerns associated with traditional methods. The ongoing
development and refinement of these technologies are crucial
for the future of drug discovery and the broader field of
biomedical research.

One of the in vivo carcinogenicity tests is checking whether
a substance will cause cancer in rats. The rat carcinogenicity
is the animal model that is the most frequently used one for
preliminary assessment of human carcinogenicity. The purpose
of the present work is to show that multi-task learning affects
the results of predicting the rat carcinogenicity positively.

II. LITERATURE REVIEW

Traditionally, the physicochemical or biological properties
of molecules have been tested using various laboratory tests.
With the rapid development of machine learning, specialized
methods have been developed to assess whether a molecule
possesses certain properties before performing laboratory tests,
thus greatly reducing the costs of assessment [3]–[6]. Only
molecules with favorable toxicity profiles may proceed to
actual wet lab tests. One of the pioneering approaches for
predicting molecule properties is to train a model on so-called
molecule fingerprints. Molecule fingerprints are essentially
vectors that describe the structure of the molecule with a multi-
hot vector. They encode the presence of specific chemical
features or patterns within a molecule. There is a variety of



fingerprints, such as ECFP, MACCS, PubChem fingerprints
[15]–[17], etc. They differ by the structural properties they
include in the feature vector and the way they calculated. After
the molecular fingerprints are extracted, they can be used to
train various traditional machine learning models and neural
network architectures [18]–[20].

Among the various machine learning approaches for solving
problems in toxicology and drug design, the methods working
with graph data have become increasingly popular in recent
years [6]–[12]. The reason for that is that molecules are
naturally representable as graphs, where atoms are the vertices
and bonds between them are edges. This so-called graph
representation of molecules led to a demand for developing
machine learning approaches tailored for working with graph
data. Those approaches coalesce under the umbrella term
Machine Learning on Graphs.

Given a set of molecules, it is a natural question to ask
whether each of them possesses a certain property (e.g. is
toxic). Formally put, we want to classify the molecules into
the ones that have the property and the ones that do not. Now,
given that we are able to represent each molecule as a graph,
the problem of molecule classification reduces to the problem
of graph classification which is covered by Machine Learning
on Graphs [21].

Perhaps the most widely used algorithms in the context of
graph classification are Graph Neural Networks (GNN) [22]–
[27]. The idea behind GNNs is message passing between the
neighboring nodes so that during forward propagation each
node aggregates the messages with information coming from
its neighborhood.

Additionally, in a variety of problems, it was shown that
in order to improve the results of predictions for a task, it
is beneficial to train the model to predict several tasks at
once. Those other tasks included in the training process are
assumed to be related with the task for which it is desired to
make the results better [28]. There is a present work on using
GNN architectures where the so-called multi-task approach is
utilized to make the results of predicting molecule properties
better [14].

III. DATASETS

In this section, we describe various tests that biologists
believe to be related with rat carcinogenicity.

A. Rat Carcinogenicity (Carcino Rat)
During this test, a drug is given to several hundreds of rats,

and then, those rats are observed over a long period of time
to check whether the drug causes cancer in rats. As there is a
correlation between cancer causation in humans and rats, this
is a useful preliminary test to assess whether the drug will
cause cancer in humans [29].

B. H2AX Agonist (H2AX)
This is an assay to identify small molecule agonists of

H2AX. This high-throughput assay allows to identification
of compounds that cause DNA damage, particularly DNA
double-strand breaks [30].

C. Ames test (Ames)
The Ames test is a widely used bacterial assay designed

to assess the mutagenic potential of chemical substances
by observing their ability to induce mutations in specific
genes of Salmonella bacteria. It serves as a rapid and cost-
effective tool in evaluating the potential carcinogenicity of
various compounds and is commonly employed in regulatory
toxicology and drug development [31].

D. Androgen Agonist (AR Agonist)
An androgen agonist is a substance that mimics the action of

male hormones like testosterone, activating androgen receptors
in the body. It’s used in medicine to treat conditions like
hypogonadism and prostate cancer, and it’s sometimes misused
in sports doping for performance enhancement [32].

E. Androgen Antagonist (AR Antagonist)
Androgen antagonists are drugs that block the action of male

hormones like testosterone, commonly used in prostate cancer
therapy to inhibit tumor growth fueled by androgens [32].

F. Androgen Binding (AR Binding)
Androgen binding refers to the interaction with male hor-

mones (androgens) like testosterone and receptors on cancer
cells. This binding can stimulate cancer growth, particularly
in androgen-sensitive cancers like prostate cancer [32].

G. Chromosomal Abberation In Vivo (CA In Vivo)
Chromosomal aberrations in vivo refer to structural or

numerical abnormalities in animal chromosomes within cancer
cells, caused by mutations or other factors. These abberations
play a significant role in cancer development and progression,
contributing to tumor growth, metastasis, and drug resistance.
Detecting and identifying these abberations are crucial for
cancer diagnosis, prognosis, and treatment planning [33]–[35].

H. Chromosomal Abberation In Vitro (CA In Vitro)
In cancer research conducted in vitro, chromosomal aberra-

tions are studied outside of living organisms, typically in cell
cultures. These aberrations, such as deletions, duplications, or
translocations, mimic those found in vivo and are crucial for
understanding cancer biology, drug development, and thera-
peutic interventions [33]–[35].

I. Estrogen Agonist (ER Agonist)
An estrogen agonist is a substance that activates estrogen

receptors in the body, mimicking the effects of estrogen
hormones. These agonists are used therapeutically in hormone
replacement therapy for menopausal symptoms, osteoporosis,
and certain hormone-sensitive cancers like breast cancer [36].

J. Estrogen Antagonist (ER Antagonist)
An estrogen antagonist is a substance that blocks or inhibits

the action of estrogen hormones by binding to estrogen recep-
tors without activating them. These antagonists are used in
medicine to treat estrogen-sensitive conditions such as breast
cancer and endometriosis, where reducing estrogen activity is
beneficial [36].



K. Estrogen Binding (ER Binding)

Estrogen binding refers to the interaction between estrogen
hormones and estrogen receptors in cells. When estrogen binds
to its receptors, it triggers a cascade of cellular responses that
regulate various physiological processes, including growth, de-
velopment, and reproduction. Understanding estrogen binding
is crucial in hormone-related conditions and diseases such as
breast cancer and osteoporosis, where estrogen activity plays
a significant role [36].

L. Micronucleus In Vivo (MN In Vivo)

In vivo micronucleus assays are tests conducted in living
organisms to assess genotoxicity by observing the presence
of micronuclei in cells, typically in blood or bone marrow
samples. Micronuclei are small, additional nuclei that can form
when chromosomes or chromosome fragments are not prop-
erly segregated during cell division. These assays are important
in toxicology and environmental health research for evaluating
the potential mutagenic and carcinogenic effects of chemicals,
pollutants, and other substances on whole organisms [37].

M. Micronucleus In Vitro (MN In Vitro)

In vitro micronucleus assays are laboratory tests used to
assess genotoxicity by observing the formation of micronuclei
in cultured cells. These assays are valuable tools in toxicology
and drug development for evaluating the potential mutagenic
and carcinogenic effects of chemicals, pharmaceuticals, and
environmental agents [38].

IV. METHODOLOGY

A typical GNN architecture has two stages in its forward
propagation procedure, first, neighborhood aggregation, and
second, fully connected tower propagation.

A. Neighborhood aggregation

The most classic approach for neighborhood aggregation is
Graph Convolutional Network (GCN). The GCN algorithm is
the following:

h(0)
v = xv (1)

hl+1
v = σ(Wl

∑
u∈N(v)

hu

|N(v)|
+Blhv), l ∈ {0, . . . , L− 1}

(2)

zv = h(L)
v (3)

where xv is the initial feature vector of node v, N(v) is
the one-hop neighborhood of node v, Wl and Bl for l ∈
{0, . . . , L − 1} are learnable matrices, and zv is the final
embedding of node v after L rounds of aggregations.

B. Readout and MLP

After performing the neighborhood aggregation procedure,
each node has an embedding encompassing the information
coming from its neighborhood and its initial feature vector.
In order to make graph-level predictions, that is, to predict
a label for an entire graph, we have to somehow summarize
embeddings of the nodes of that graph to obtain an embedding
describing the entire graph. A simple approach to doing that is
to sum or average embeddings of the nodes, or even perform
max pooling on them. The function that summarizes the
node embeddings into a graph embedding is called a readout
function.

After the embedding for the entire graph is obtained it is
propagated through an MLP that outputs the label. Therefore,
the loss is defined with respect to the output of the MLP, and
since the output depends on the weights of both, MLP and
graph convolutions, during the training all those weights are
optimized together.

C. Proposed model

Du et. al. [14] enhanced the prediction quality of ADMET
properties of molecules by training the model not only to pre-
dict labels for the desired task but also on several other tasks by
leveraging the paradigm of ”one primary, multiple auxiliaries”.
The approach suggests to train the model to predict multiple
tasks by treating one of them as a primary. For this research,
we adopted their approach to improve the predictions on rat
carcinogenicity task, by taking rat carcinogenicity as a primary
task and several other tasks that we know from biological
knowledge are related to it as auxiliaries. We make use of the
ResGCN model proposed in [14] to conduct the experiments
(Figure 1).

In the neighborhood aggregation phase of this architecture,
besides the classic GCN convolution presented above, there is
also a residual connection added, in a way that for each node
of a graph, the embedding of that node is passed through
one linear layer and then added to the embedding obtained
through GCN convolution. This is similar to the approach
leveraged in ResNet [39]. In the phase of readout, the weighted
mean of the node embeddings is computed. These weights
are learnable, and are task-dependent, thus for each task, the
node embeddings are aggregated with different weights. After
the readout step, the graph embeddings for auxiliary tasks
are ready, but for the primary task, we get its embedding
that is obtained after the readout, and gate it with each of
the auxiliary task embeddings separately, then we sum those
gated feature vectors to obtain the final embedding for the
primary task. Finally, each embedding propagates through the
MLP corresponding to its task. The loss function for each of
the tasks is BCE loss, which also balances the weights for
classes for each task separately in order to address the issues
associated with class imbalances.

V. EXPERIMENTS

We take as a baseline the model trained on Carcino Rat
single-task, meaning that the ResGCN model is fitted by taking



Fig. 1. ResGCN architecture

Carcino Rat as a primary, and no tasks as auxiliaries. We want
to understand, whether taking some of the tasks described in
Section III as auxiliaries will improve the results of the model
on Carcino Rat. We compare models in the following way:
we take their scores on multiple splits and then compare the
mean AUC-s on Carcino Rat of each model on those splits.
Additionally, we check on how many splits one model superior
to the other in predicting Carcino Rat labels. We perform
the Mann-Whitney U-test on the results of the obtained AUC
scores for Carcino Rat in order to get a statistical estimate.
Wherever mentioned above, the AUC scores for Carcino Rat
are the validation scores. We decided to evaluate the models on
validation sets because during the training we noticed that the
AUC score fluctuates a lot depending on the split, and since
the test set is just one set, we thought it would not accurately
show which model was better.

A. Auxiliary Selection

The first decision to make is which tasks should be chosen
to participate as auxiliaries in order to improve the results
on Carcino Rat. Indeed, from the point of view of biology,
all of them should be useful, but from the point of view of
machine learning, it is not obvious whether including each
of those would help or harm the prediction accuracy for
Carcino Rat. To perform the auxiliary selection we make 20
stratified random splits, and then, we train and evaluate the
baseline model on those 20 splits. Then, for each of the
auxiliary tasks, we take them exclusively as an auxiliary to
Carcino Rat as the primary task, then train, evaluate, and
compare the results with the baseline. The tasks with which the
accuracy of Carcino Rat would be significantly greater than
the baseline will be considered useful auxiliaries and will be
included in the final training.

B. Final Experiment

After selecting which tasks should participate in the training
as auxiliaries to Carcino Rat, we actually train the model with
Carcino Rat being the primary task and the selected tasks as
auxiliary tasks. Additionally, in order to understand whether
it makes sense to choose between the auxiliaries, we decided
to train a model that involved all auxiliaries.

VI. RESULTS

A. Results For Auxiliary Selection

We see that the p-values of the U-test are not significant
anywhere (Table I), and we thought that the reason for that
may be that we made too few splits for the test to be able
to adequately compare the performances. Thus we decided to
choose the auxiliaries based on how many validation splits the
model with the auxiliary outperformed the baseline. This way,
we chose Ames, AR Agonist, CA In Vitro, and CA In Vivo
as auxiliaries. Additionally, in order to have more precise
comparisons for the final experiment, we made 50 splits and
conducted the final experiments on them.

B. Results For Training With Multiple Auxiliaries

We now make 50 splits and train the model with multiple
auxiliaries(Table II).

We see, that when involving those selected auxiliaries in the
training process, the mean AUC goes up by 2%, the model
then beats the baseline on 38 splits out of 50, and finally,
as we have enough splits, we perform a t-test and obtain a
significant p-value. This indeed shows that multitask learning
has the potential to improve the results for the problem of
carcinogenicity prediction. As of the model trained on all
tasks, we see, the results are worse compared to the model
with selected auxiliaries.



Auxiliary Mean AUC Num Better Than Single U-stat p-value
Single 0.754
H2AX 0.762 11 215.5 0.685
Ames 0.769 14 227.5 0.465

AR Agonist 0.762 14 220 0.598
AR Antagonist 0.760 12 211.5 0.766

AR Binding 0.758 12 209 0.818
CA In Vitro 0.763 15 223.5 0.534
CA In Vivo 0.761 14 222 0.561
ER Agonist 0.754 9 199 0.989

ER Antagonist 0.747 8 164.5 0.344
ER Binding 0.750 10 187 0.735
MN In Vitro 0.759 11 207.5 0.850
MN In Vivo 0.757 10 206 0.882

TABLE I
RESULTS FOR AUXILIARY SELECTION

Auxiliary Mean AUC Num Better Than Single t-stat p-value
Single 0.737

Selected Auxiliaries 0.757 38 2.226 0.01
All Auxiliaries 0.752 33 1.59 0.06

TABLE II
RESULTS FOR FINAL EXPERIMENTS

VII. CONCLUSION AND FUTURE WORK

To conclude, the experiments have shown that the multi-
task learning approach is well-suitable with the graph neural
networks and enables them to learn to predict rat carcino-
genicity better than in the single-task setting. And so, we’ve
shown that by using cheaper tests we can enhance the quality
of predictions for a more expensive rat carcinogenicity test.
For future work, it is planned to use more expressive graph
convolutions, such as GIN and GINE, as well as to leverage
a stricter approach for the auxiliary selection.
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