
Armenian Books Genre Classification
Spring 2024

Author: Anna Shaljyan
BS in Data Science

American University of Armenia

Supervisor: Natali Gzraryan
MS in Big Data Analytics, IESEG

Abstract—This capstone project presents an Armenian Books
Genre Classification model designed to predict the genre of a
book given details such as the title of the book, author name,
description of the book, and name of the publisher. After doing
research and identifying available sources, data was scraped
from websites of bookstores and online databases. The dataset
included 14 features about books belonging to 17 fiction genres.
After data preprocessing, methods such as word2vec conversion,
imputation of NaN values, Armenian word2vec conversion, and
TF-IDF encoding were explored. They were combined with ML
algorithms, and several other classifiers, which couldn’t handle
NaN values. Additionally, LogisticRegression and Feed Forward
Neural Network were used. The best model was built using
TF-IDF encoding and CatboostClassifier, which handles NaN
values and prevents overfitting. The final model had a high
multiclass AUC of 90% and accuracy of 65%. Based on this
model, a Streamlit app was built, which allows for real-time
testing and exploration of the classifier. Overall, this project
helps to successfully automate the tedious task of manually
understanding the genre of a new book.

Keywords: Armenian Books, genre classification, word2vec,
imputation, Armenian word2vec, TF-IDF encoding, CatboostClas-
sifier, ML algorithms.

I. LITERATURE REVIEW

Nowadays, it is becoming more and more common to use
machine learning algorithms when dealing with digital data,
or tasks such as classification, predictions and etc. When
it comes to text classification, machine learning algorithms
such as K-nearest neighbor (KNN), Support Vector Machine
(SVM), and Logistic Regression (LR) are often implemented.
P. Shiroya, D. Vaghasiya et al. from Parul University in
India implemented these techniques when doing books genre
categorization using a dataset containing the title and abstract
of the book. There is a common issue for librarians, bookstore
owners, and readers to categorize the genre of the book, as lots
of books lack a genre label, and doing it manually can be a
very difficult task [1]. To do so, applying machine learning
techniques, researchers from Parul University initially con-
structed a dataset containing the title of the books, the writer’s
name, book dialects, their sort and dynamic. Afterward, the
data will undergo several stages, such as data pre-processing,
text cleaning, feature engineering, training a model, assigning
classifiers, and evaluating the results of the model’s output.
This model can later be utilized as a tool for libraries and
bookstores.

Different machine learning algorithms can result in differ-
ent drawbacks and advantages, so when experimenting with

various algorithms, researchers from Parul University found
that KNN is costly for computations on large datasets, and
it is difficult to find an optimal value of k. However, it is
good for classification of unlabeled data and is a common
non-parametric method. SVM and LR are easier and more
computationally efficient than KN, as SVM can model non-
linear decision boundaries, and LR can extend to multiple
classes (multinomial regression). Besides advantages, SVM
and LR also have drawbacks, such as LR being limited to
linear boundaries and requiring data that doesn’t contain mul-
ticollinearity between independent variables, while SVM lacks
transparency in results because of the high dimensionality of
text data. To handle these drawbacks and find a good alterna-
tive, a combination of several machine learning algorithms is
usually used to create a hybrid model, implemented alongside
feature selection techniques. It is important to note that not
only the right selection of algorithms is crucial, but also good
pre-processing of the dataset. Larger datasets decrease the
classification error, but if there is redundant or irrelevant data,
it will increase the computational complexity and decrease the
accuracy of the model [1].

Researchers S. Gupta, S. Jain, and M. Agarwal also did
books genre classification using Machine Learning (ML) and
Natural Language Processing (NLP) to make the tedious task
of manually reading the whole book and then classifying its
genre an automated process [2]. A common problem when
classifying a book is the huge amount of words that it contains
because when using it for building a feature matrix, it can
lead to a curse of dimensionality. In such cases, S. Gupta
et al. combined similar words into the same class by using
NLP and Principal Component Analysis (PCA), which help
in feature number reduction. As there are both labeled and
unlabeled data about books, labeled data is used for training
purposes, and when unlabelled data is added to it, the model’s
accuracy increases.

The researchers applied the methodology that books are
in one-to-one relationship with their genre, as one book can
be assigned to only one genre. They only used book titles
and their genre without gathering additional data such as
publication date, author, etc., combined with the usage of a
bag of senses, which allowed them to represent the features.
The advantage of bag of senses is that it does dimensionality
reduction based on similar terms extracted from Wordnet.
Later, TF-IDF is used to compute the weight of each term,



and PCA helps to reduce the dimension of the feature matrix
further. In the last step, the AdaBoost classifier is used to do
the book genre classification [2].

The flow of the research started with scraping data, and
cleaning data by eliminating the most frequent and redundant
words that don’t affect categorization. When the feature matrix
is still sparse, the computation is costly and slow, but with
further preprocessing and usage of PCA, the dimensionality
will be reduced. The feature matrix is divided into training and
testing sets, followed by applying the Decision Tree Classifier
and AdaBoost Classifier on the training set to learn from it.
After training the model on its training set, the test set is
used to make predictions, and the graph plotted showed that
only using labeled data gives 81.18% accuracy, while when
unlabeled data is combined with labeled data, the accuracy
increases to 92.88% [2].

P. Desai, G. Saraiya, and M. Nan from Dharmsinh Univer-
sity in India also saw the problem of books either being badly
categorized or defined under a very broad genre of fiction/non-
fiction. They proposed to use summaries of the books and
apply NLP for classification but didn’t limit books to being
classified only to one genre [3]. Both labeled and unlabeled
data were used, but the volume of unlabeled data was much
more. Labeled data was used to train the model, and it was
noted that more data combined with similar new data helped
to build a better classification model that usually shows as an
output the level of accuracy of prediction between 0 and 1.
A threshold can be used to dismiss the results that are of low
accuracy.

P. Desai et al. scraped data containing book genre, title,
and author name, and there were 179 distinct genres, out of
which only the most popular genres were left, and then the
distribution of each genre was calculated. The data preparation
was done on summaries of the books, starting from conversion
of text to lowercase, elimination of punctuation marks and
stop words, doing word-to-number conversion, and stemming.
Additionally, data augmentation was applied to artificially do
synonym replacement and increase records in genres with
fewer occurrences to have a more balanced distribution. La-
beled data containing the genre of the books was mostly
categorized among 1 to 4 genres [3].

They used multi-label classification, which allows books
to be categorized between one, two, or many labels. They
use the F1 score as a metric and create a binary matrix to
show 1 next to one of the 139 genres if it is an applicable
genre or 0 if it doesn’t belong to that genre. Later, TF-
IDF vectorizer was used to vectorize the summaries, and
after that OneVsRestClassifier was used, which consists of
fitting one classifier per class. It has the advantage of being
computationally efficient and easily interpretable. To find the
accuracy of the developed model, they created a prediction
function that, for one dataset, gave an accuracy of 0.81 and
for another F1 score of 0.71. They concluded that the Naive
Bayes Classifier gives the most accurate predictions, and it is
better to categorize books into not one but several genres for
better understanding [3].

II. INTRODUCTION

The initial step was to do research to understand whether
there were available resources to use immediately from the
web or whether additional actions were required. There were
many available datasets on Kaggle, Github, or other platforms
on books, but most of them contained only a few features
and were based on English books. As the project’s aim was
to build an Armenian books genre classifier, none of these
datasets was suitable for the goal. We decided that the right
approach was to concentrate on web scraping and composing a
list of Armenian websites, either of libraries or bookstores, that
contained information on Armenian books or books translated
into Armenian. After composing a list, we also identified what
features were present in the data of each of the bookstores
and libraries. As a result, nine primary sources were identi-
fied, resulting in approximately a database of 15000 books.
However, as several of these websites contained information
in English or Russian rather than Armenian, few of these
were not desired for scraping. Another limitation was category
mismatch on websites, especially bookstores, as one website
concentrated on very broad categories and another on very
detailed separation. To minimize category mismatch as much
as possible, we decided to concentrate on scraping fiction
books with their respective categories, as non-fiction book
genres were too broad and too many.

III. DATA SCRAPING

A. Goodreads data

The first source was Goodreads, as it is the world’s largest
website for readers. It helps readers discover new books in
all kinds of genres and is a great tool for keeping track of
reading progress and goals. Goodreads has a shelf of Armenian
books containing very detailed information about 800 books
such as title, author name, category labels, description of the
book, number of pages, average rating, number of ratings and
reviews, ISBN of the books, name of the publisher, year of
publication and much more. However, there were exceptions,
and some of the books didn’t have various details.

Fig. 1: Example of how information about books looks in
Goodreads ”Armenian Books” shelf

B. Zangak, Bookinist, and grqaser.org websites

Other sources were Zangak and Bookinist bookstores’
websites, which contained both fiction and non-fiction books



displayed in Armenian, English, and Russian. Zangak book-
store’s website was well structured, so we scraped data about
1260 fictional books under several genres, containing infor-
mation such as the title of the book, author name, description
of the book, price of the books, and several other additional
parameters.

Fig. 2: Example of how information about books looks on
Zangak bookstore’s website and what features are present

For scraping Zangak’s data, we used Selenium Webdriver,
which allows us to automate the process of obtaining the
required information. The important portion of the work was
to do research and understand the HTML structure of the
webpage to identify patterns for the selectors that were desired
for scraping. The desired features were the title of the book,
name of the author, price of the book, description of the book,
and content under the “More Info” section if it was applicable.
We identified the genres that we want to gather data on and
their base links, so later, we can use “xpaths” for each of
the features to start the scraping process. We looped through
each URL of corresponding genres and scraped information
on different features present for each book. We saved the
checkpoints for each genre, and the bookstore’s concatenated
full dataset was saved as a separate Excel file.

However, when we started to scrape Bookinist’s website,
we noticed that it was poorly structured, and for fictional
books, there were four broad categories matching Zangak’s
defined genres, which were Armenian classic literature, Ar-
menian contemporary literature, Foreign classic literature, and
Foreign contemporary literature. Because of the website’s
poor structure, we decided to use a Chrome Extension called
Webscraper.io [4], which is a dynamic automated scraper
where you build a scraper Site Map giving attribute names and
structure examples for different selectors, so you can scrape
the website and save the output either as CSV or Excel file.

We used this technique for grqaser.org too, which contained
more detailed descriptions and genre classification for each
book, resulting in a database of 866 books. Using Web-
sraper.io helped to fasten the process of scraping because of
its pagination handlers and scroll-down feature. At the end,
the database containing information about books summed up
to approximately 4000 titles.

Fig. 3: Example Sitemap structure from Webscraper.io’s doc-
umentation

IV. DATA PREPROCESSING

A. Cosine similarity calculation

After scraping the Goodreads dataset, we identified that each
book contained almost 100 labels, but we needed just one label
matching the most accurate genre. We decided to establish a
list containing 20 popular book genres, which would serve as
a base for further steps:

• Mystery
• Thriller
• Romance
• Science Fiction
• Fantasy
• Historical Fiction
• Horror
• Crime
• Biography
• Memoir

• Self-Help
• Young Adult
• Children’s Literature
• Adventure
• Contemporary
• Dystopian
• Suspense
• Poetry
• Comedy
• Drama

As labels contained textual data and the project’s method-
ology was to use NLP techniques, we used spaCy, which is
a free, open-source library in Python and has many features
such as Named Entity Recognition (NER), Part-of-Speech
tagging (POS), text classification, morphological analysis,
linguistically-motivated tokenization and much more. We ini-
tially loaded spaCy’s English tokenizer, preprocessed and
cleaned labels of books along with a defined popular book
genre list, and then proceeded with word2vec transformation
again using spaCy. The last step in this process was to calculate
cosine similarity (a measure in data analysis that calculates the
similarity of two non-zero vectors), which will iterate over the
popular book genre list and labels list for each book and do
the comparisons by giving a high score to the genre that is the
most similar to one of the genres from the base list. Initially,
our threshold was strict at 0.9, but we noticed that such a
high threshold eliminates a genre label for lots of books, so
we reduced the threshold to 0.75, and for each book, only one
matching genre was left.

B. Regex and data types standardization

As several sources for data gathering were used, features of
books contained data in different formats, and standardization
was required. It was important to normalize data types of



features to be able to later use them accurately. Initially,
functions such as numeric value extraction and textual data
extraction were defined to change column types to object
or Int64. For example, the numeric value extraction function
helped to change the number of reviews from 100250 Reviews
to 10250. Otherwise, the data type of ”Number of reviews”
column would be an object, and we wouldn’t be able to use
it for analysis. The text extraction function helped to omit
numbers in brackets when the desired data type for the column
was object. Regex was used to specify patterns in text in
columns that contained non-numeric characters or additional
information in brackets, which also helped to normalize the
data types.

Fig. 4: Regex common patterns

As a result, the dataset contained 14 columns belonging to
3 different data types: object, Int64, float16

Fig. 5: Data types of the resulted dataframe

C. Data translation

Another important issue that required handling was the
language of scraped data in the case of Goodreads. Even
though the data scraped was about Armenian books, the
language used for all the features was English. As our
model was going to work on Armenian text, we needed to
find a method to translate the data available from English
to Armenian as accurately as possible so as not to lose
much semantic meaning. To be able to translate the present

data in Goodread’s dataset, we initially preprocessed the
text and removed special characters and symbols. Then, we
chained several translation Python libraries to change from
one method to another in case of failure. We used packages
such as detect from the langdetect library, Translator from
the googletrans library, and MyMemoryTranslator combined
with GoogleTranslator from the deep translator library. We
changed several methods to use packages that were free of
cost and not computationally costly to process on GPU. This
technique helped to preserve most of the scraped data from
the Goodreads website, as we eliminated the poor outcomes.
In the end, our dataset contained 14 features such as the title
of the book, author name, price of the book, description, genre
label, publisher name, number of pages, name of the reader (in
case of audiobooks), language of the books and numeric data
such as average ratings, number of ratings and reviews, year of
publishing and age group suitable for reading the mentioned
books.

V. METHODS

A. Word2vec and Imputation

After data preprocessing, our data contained 6 columns
of type Int64, 1 column of type float64, and 7 columns of
data type object. To be able to build models using machine
learning algorithms such as RandomForestClassifier, Deci-
sionTreeClassifier, LogisticRegression, and MLPClassifier,
which were suitable for our classification task, we needed
to handle columns of object data type. However, as these
ML algorithms don’t support NaN values, there was another
problem of handling missing values in non-target columns.
To be able to use columns of object type while keeping
the semantic meaning, we tried word2vec [5] conversion,
which trains word2vec models for each text column, vectorizes
the textual data, or returns NaNs when words are out-of-
vocabulary and then creates separate columns for each element
of the vector. For handling NaNs, we tried imputation, which
supports several strategies, such as replacing NaNs with mean,
median, most frequent, or constant values. Unfortunately,
only a few columns, such as Title, Author, and Description,
contained not many non-null rows, so this was not a good
technique for handling NaNs, and it affected the accuracy of
tested models.

When using word2vec conversion, we also noticed that
our dataset is heavily imbalanced because we have 30 book
genres, where the upper portion contains many book examples,
while some genres have as few as 1-10 book examples. We
decided to merge child genres with their parent genres so the
problem of imbalance would be minimized, and we would also
decrease the number of available genres. It helped to increase
accuracy a little bit, but still, the best was 60% accuracy and
a low multiclass AUC score. Besides the above-mentioned
methods, we also tried BaggingClassifier, StackingClassifier,
VotingClassifier, and building a custom Feed Forward Neural
Network.

The Classifiers didn’t differ much from previous results,
but when we built FFNN, we understood that as our dataset



Fig. 6: Different methods with respective accuracies

is not very big, it is not suitable for this task, and even
hyperparameter tuning with RandomizedSearchCV won’t
help to set up such parameters that our model will give good
accuracy.

B. Armenian word2vec conversion

As word2vec from the gensim library was trained on an
English language dataset, we decided to try the Armenian
word2vec library downloaded from the GitHub repository of
YerevanNN [6], which was trained on Armenian Wikipedia.
To not deal again with NA handling, we decided to use
CatboostClassifier, which is an open-source boosting library
developed by Yandex and is suitable for tasks such as classifi-
cation where many independent features are present. Catboost
has built-in methods for handling missing values without the
need for imputation. It is robust to overfitting, supports GPU
version for faster training, and there is no need for extensive
parameter tuning [7]. Even though it had many useful features
matching our objectives, combined with Armenian word2vec
conversion, it didn’t give high accuracy and multiclass AUC
scores.

C. Further dataset expanding

Before trying another approach, we decided to fix the data
imbalance issue as much as we could and scraped additional
data for popular categories romance, horror, fantasy, and
mystery & thriller, resulting in a dataset of approximately 7000
books. We again used several translation libraries to translate
the gathered data from Goodreads into Armenian. When we
rerun the codes for word2vec and Armenian word2vec meth-
ods, we noticed that data is prone to overfitting and decided
to explore the issue by printing the genres that are mostly
incorrectly labeled. As a result, we identified that our models
mostly find it difficult to identify between horror and mystery
& thriller, Armenian classic literature and Foreign Classic
Literature, Armenian Contemporary Literature and Foreign
Contemporary Literature, and several other cases, so we did
additional merges. After a couple of more merges, our dataset
now contained 17 distinct genres, and data imbalance was less
noticeable.

Fig. 7: Genre distribution of modified dataset

VI. RESULTS AND DISCUSSION

A. TF-IDF encoding

From the word2vec package of the gensim library and
Armenian word2vec, we switched to TF-IDF [8] encoding,
which is short for Term Frequency Inverse Document Fre-
quency of records and helps to calculate how relevant a corpus
is to a text. It follows the logic that the weight of a term
proportionally increases to its frequency and is a widely used
statistical method in NLP and information retrieval. So, after
data preprocessing, we filled the NaN values with empty
strings in our desired feature columns and started the TF-IDF
encoding by first combining these columns into a single text
column and then applying TF-IDF encoding by initializing
TfidfVectorizer(). As a result, we create a TF-IDF matrix by
fitting the initializer tfidf vectorizer to our combined single
text column and start the train/test splitting by contributing
80% to the train set and 20% to the test set. Besides that, we
also fix a random state so our code is reproducible and doesn’t
split the data differently after each rerun.

B. Catboost model experementations

After applying TF-IDF encoding, we experimented with
CatboostClassifier and tried different values for parameters
such as the number of iterations, learning rate, depth, L2
regularization extent, and so on. Our target evaluation metric
was Multiclass AUC, as it is the most suitable metric for
evaluating the results of our classifier model, and as we
trained our model on GPU, it sped up the process significantly.
Increasing the number of iterations and depth of the model
combined with a high border count helped to capture more
complex patterns, while increasing the L2 regularization level
helped to manage overfitting and get correct evaluation results.
We also played with the learning rate and saved the results of
each such experiment as catboost model and trained TF-IDF
encoding matrix .pkl files.

C. Best Catboost model

As the best model, we saved the Catboost model which had
≈ 65% accuracy and ≈ 90% multiclass AUC. Higher accuracy



and AUC scores indicated that data expansion and merges of
similar genres helped our model to predict better for unseen
data. Additionally, experimenting with parameters and defining
higher number of iterations or depth of the tree, resulted in
model’s understanding of more complex patterns. However, as
there was still an imbalance in our dataset, and it contained
less than 10000 titles, the accuracy couldn’t have been much
higher. Additional data expansion and preprocessing would
have been required to achieve higher results. If there were
resources such as stronger GPU or paid translation API, the
whole flow of building models would become faster.

D. Demo with Streamlit app

Then, we used the final model’s catboost and TF-IDF en-
coding .pkl files to build a Streamlit [9] app for demonstration
purposes. This Streamlit app supports real-time experimenting
with our model, where the user can give the title of the
book, the description of the book, the name of the author
and publisher, and see the predicted top 5 genres with their
respective probabilities. It should be noted that it is optional to
fill in information on the description of the book, author name,
or publisher name. However, the more information our model
is given, the easier it becomes for it to predict the accurate
genre.

Fig. 8: Output of model’s prediction in Streamlit app with
respective probabilities

Fig. 9: Cover of the given book [10]

Besides the experimenting page, our app also has the option
of exploring our dataset, where, with the help of bar chart
visualization, we display the frequency of each genre in
our dataset. Additional visualizations that portray additional

information about our dataset and results might be added in
the future. The users can also view our dataset and filter it by
genre.

Fig. 10: Explore Books Data page on the Streamlit app

Fig. 11: Example of filtering our dataset based on a genre and
viewing details about displayed books

VII. CONCLUSION AND FUTURE WORK

This project has developed an Armenian Books Genre
Classification model to predict the genre of a book given
details such as the title of the book, description of the book, au-
thor, and publisher name. The model was built using TF-IDF
encoding to transform text columns of object type to vector
format and fit them to a model for classification. Other meth-
ods besides TF-IDF were used, such as the word2vec package
from the gensim library and the Armenian word2vec package
developed by YerevaNN, combined with Machine Learning
algorithms and other classifiers, which mostly couldn’t handle
NaN values in data, so imputation was required. For building
the best model, CatboostClassifier was used, which has
many useful features and handles NaNs while also preventing
overfitting. The final model with Catboost resulted in a high
Multiclass AUC of 90% and accuracy of 65%. This model
was used to build a Streamlit app, which allows for real-time
implementation of the classifier and prints the top 5 genres for
the given book with their respective probabilities. Additionally,
the app has an Explore Books Data page, where additional
information about the used dataset is presented.

One of the major areas for improvement is fixing the
remaining genre class imbalance, as several genres still had 7-
50 book examples, while others had more than 600. Although
it is trained on few examples, it surely reduces the accuracy
score, as given a new book from one of those genres, it won’t
be able to successfully predict it in most of the cases. Besides



that, only fiction genre books were scraped, as non-fiction
genres are too many and available data in Armenian is scarce.

There were no available datasets for immediate usage from
Kaggle, Github, or other sources, so all data was scraped. As
the model’s aim was to predict the genre of the book given
details in Armenian, the dataset to use for the model also
needed to be in Armenian. This introduced the problem of
expanding the dataset with data in English, which required
a translation, and several translation packages were chained
together to reach promising results. This made the process of
translation computationally costly and timely. If paid versions
of automated translations, such as APIs, were used, the process
would be much faster and more efficient.

To refine this project, expanding the dataset, adding also
non-fictional genre books and obtaining better translation
means may be helpful. Additionally, it would be beneficial
to minimize the computational time cost of the model and fix
the data imbalance in order to explore its opportunities to full
scale.

REFERENCES

[1] Shiroya, P. (2021). Book Genre Categorization Using Machine Learn-
ing Algorithms (K-Nearest Neighbor, Support Vector Machine, and
Logistic Regression) using Customized Dataset. International Journal
of Computer Science and Mobile Computing, 10(3), 14–25. https:
//doi.org/10.47760/ijcsmc.2021.v10i03.002

[2] Gupta, S., Agarwal, M., & Jain, S. (2019). Automated Genre Classifi-
cation of Books Using Machine Learning and Natural Language Pro-
cessing. Confluence. https://doi.org/10.1109/confluence.2019.8776935

[3] Desai, P. (2021). Book genre prediction. International Journal for Re-
search in Applied Science and Engineering Technology, 9(10), 593–599.
https://doi.org/10.22214/ijraset.2021.38409

[4] Scraping a site — Web Scraper Documentation. https://webscraper.io/
documentation/scraping-a-site

[5] Gensim: Word2vec Embeddings. https://radimrehurek.com/gensim/
models/word2vec.html

[6] YerevaNN. (2015). GitHub - YerevaNN/word2vec-armenian-wiki: Test-
ing word2vec on Armenian Wikipedia. GitHub. https://github.com/
YerevaNN/word2vec-armenian-wiki.git

[7] GeeksforGeeks. (2024, April 29). CatBoost in Machine learning. https:
//www.geeksforgeeks.org/catboost-ml/

[8] GeeksforGeeks. (2023, January 19). Understanding TF-IDF (Term
Frequency-Inverse Document Frequency). https://www.geeksforgeeks.
org/understanding-tf-idf-term-frequency-inverse-document-frequency/

[9] Streamlit. A faster way to build and share data apps. https://streamlit.io/
[10] Bookinist book, (2024). https://books.am/am/catalog/product/view/id/

96806/category/2/.

https://doi.org/10.47760/ijcsmc.2021.v10i03.002 
https://doi.org/10.47760/ijcsmc.2021.v10i03.002 
https://doi.org/10.1109/confluence.2019.8776935 
https://doi.org/10.22214/ijraset.2021.38409 
https://webscraper.io/documentation/scraping-a-site 
https://webscraper.io/documentation/scraping-a-site 
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/YerevaNN/word2vec-armenian-wiki.git
https://github.com/YerevaNN/word2vec-armenian-wiki.git
https://www.geeksforgeeks.org/catboost-ml/
https://www.geeksforgeeks.org/catboost-ml/
https://www.geeksforgeeks.org/understanding-tf-idf-term-frequency-inverse-document-frequency/ 
https://www.geeksforgeeks.org/understanding-tf-idf-term-frequency-inverse-document-frequency/ 
https://streamlit.io/
https://books.am/am/catalog/product/view/id/96806/category/2/. 
https://books.am/am/catalog/product/view/id/96806/category/2/. 

	Literature Review
	Introduction
	Data Scraping
	Goodreads data
	Zangak, Bookinist, and grqaser.org websites

	Data Preprocessing
	Cosine similarity calculation
	Regex and data types standardization
	Data translation

	Methods
	Word2vec and Imputation
	Armenian word2vec conversion
	Further dataset expanding

	Results and Discussion
	TF-IDF encoding
	Catboost model experementations
	Best Catboost model
	Demo with Streamlit app

	Conclusion and Future Work
	References

