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Abstract—This project aims to address the need for Speech-
to-Text Recognition (STR) technology in the Armenian language
by creating a practical and efficient system. Leveraging pre-
trained Automatic Speech Recognition (ASR) models, the project
fine-tunes them using the latest releases (16.1 and 17.0) of the
Common Voice Armenian Audio Dataset. Through a sophisti-
cated ecosystem comprising frontend and backend components
integrated with MongoDB for data management and hosted on
a cloud-based server, the project aims to deliver a practical
and efficient web app. The web app offers users a user-friendly
platform to experiment with different speech recognition models,
such as Whisper, Vaw2Vec2, Quartznet, Citrinet, and more,
to transcribe audio recordings and manage their transcription
history. Through a comprehensive account of the development
process, including encountered challenges and implemented so-
lutions, this project seeks to advance the field of speech-to-text
recognition while advocating for the integration of the Armenian
language into modern digital communication.

I. INTRODUCTION

The Armenian language has a rich historical background
and is considered one of the earliest branches of the Indo-
European language family. It has persisted into written history,
yet the technological advancements, specifically in the Speech-
to-Text Recognition (STR) domain, have not fully embraced
the linguistic nuances of Armenian. This gap in technological
representation has provoked the initiation of this project, aimed
at creating a practical and efficient Speech-to-Text Recognition
system specifically for the Armenian language.

In response to this imperative, our project attempts to
not only address the existing deficiency but also contribute
to the further advancement of Armenian speech recognition
technology. By utilizing the latest Automatic Speech Recog-
nition (ASR) models and the latest (16.1 and 17.0) Common
Voice Armenian Audio Datasets, we aspire to conduct a
comparative experiment by fine-tuning different ASR models
and achieving higher accuracy in transcribing Armenian audio
data. Furthermore, central to our endeavor is developing a
web app that offers a user-friendly platform to experiment
with fine-tuned speech recognition models such as Whisper,
Vaw2Vec2, Quartznet, Citrinet, etc.

The following methodology was primarily employed in the
scope of our project.

• Exploration of Common Voice 16.1 and 17.0 Ar-
menian Dataset: In this initial phase, we delved into

the Common Voice 16.1 and 17.0 Armenian Datasets
to understand their structure, content, and quality. This
step was crucial for identifying the data preprocessing
requirements and selecting appropriate ASR models for
fine-tuning.

• Preprocessing of Dataset for ASR Model Compati-
bility: Following dataset exploration, we conducted pre-
processing typical to the selected ASR model’s specifica-
tions: this involved data formatting and more to enhance
the dataset’s suitability for training the ASR models.

• Fine-tuning of ASR Models: Leveraging the prepro-
cessed dataset, we proceeded to fine-tune various ASR
models. This iterative process involved training the mod-
els on the Armenian dataset to adapt them to the lan-
guage’s specific phonetic and linguistic characteristics.

• Evaluation using WER and CER Metrics: To assess
the performance of the fine-tuned ASR models, we
employed Word Error Rate (WER) and Character Error
Rate (CER) metrics. These metrics provided quantitative
insights into the accuracy and effectiveness of the models
in transcribing Armenian speech.

• Integration with Web Application: Upon achieving
satisfactory performance levels, we integrated the check-
points of the fine-tuned ASR models with the web appli-
cation. This integration enabled users to access the ASR
functionality directly through the user-friendly interface
of the web application.

• Front-End Implementation:
– The React.js framework was used for front-end de-

velopment.
– Created a UI that is easy to use and familiar to

users, using inspiration from ChatGPT and similar
platforms.

– Elements to facilitate smooth user interaction include
the Home, Login, Registration, My Transcriptions,
and Services pages.

– Included necessary libraries, such as React-Spinners
for loading animations and Axios for HTTP queries.

– Used Vercel for front-end cloud deployment.

• Back-End Implementation:
– Java was used to develop the backend and the



Spring Boot framework because of its scalability and
resilience.

– The layered architectural design was used to guaran-
tee maintainability and modularity.

– We implemented a repository layer for database
access, a service layer for business logic, and con-
trollers to handle incoming requests.

– MongoDB was integrated with the application using
Spring Boot Starter Data MongoDB, allowing for
adequate data storage and retrieval.

• MongoDB Integration:
– Database schemas were created to effectively store

conversation data, audio file metadata, and user in-
formation.

– Used the document-based structure of MongoDB to
store and handle data in a schema-less setting.

• Cloud Deployment:
– Explored best-suited cloud providers for hosting

back-end servers.
– Opted for Azure, configuring a virtual machine with

16GB RAM and 4v CPUs for deploying the web
app.

This paper walks you through the detailed sections to better
understand each of the components of our methodology, while
an extensive literature review spanning from 2016 to 2024,
providing unique insights, methodologies, and advancements
in the field, creates a bigger image for you.

II. LITERATURE REVIEW

The development of Armenian Speech-to-Text Recognition
(ASR) systems has made significant progress in recent years,
driven by a growing interest in developing innovative systems
for under-resourced languages like Armenian. This section
reviews distinct works spanning from 2016 to 2024, each
providing unique insights, methodologies, and advancements
in the field. These works underscore the challenges and suggest
solutions for pursuing accurate and efficient Armenian ASR
systems.

A. ”Noise-Robust Speech Recognition System for Armenian
Language”[2]

Our review begins with Anahit Vardanyan’s master’s the-
sis, ”Noise-Robust Speech Recognition System for Armenian
Language,” at the American University of Armenia in 2016.
The building blocks included training an acoustic model,
generating a dictionary, building grammar, and developing
an Android application. The author notes that the quality of
the acoustic model is highly dependent on the quality and
quantity of the training data and that it is essential to use a
diverse and representative dataset to ensure good performance.
Furthermore, the ASR system uses a dictionary (a list of words
and their corresponding phonetic transcriptions) to map the
acoustic signal to a sequence of words and grammar (a set of
rules that define the structure of the language and the possible
sequences of words) to constrain the search space and improve

recognition accuracy. The author states that the testing audio
set was segmented into clean, noisy speech samples collected
from three speakers, one male and two females. Key findings
of the thesis show that the ASR system worked reasonably well
on clean speech, but its performance degraded in the presence
of noise.

TABLE I: Word Error Rate (%) for the Testing Audio Set

Testing set: clean speech noisy speech

Speaker1 (trainer, female, age 24) 25.3% (16/63) 82.8% (58/70)
Speaker2 (female, age 23) 54.6% (41/75) 87.5% (35/40)
Speaker3 (male, age 24) 62.0% (54/87) 97.5% (39/40)

B. ”A Conformer-Based Automated Speech Recognition for
the Armenian Language” [10]

Successively, the research paper ”A Conformer-Based Au-
tomated Speech Recognition for the Armenian Language” was
authored by Davit Karamyan and Tigran Karamyan in Febru-
ary 2022. The paper’s key finding demonstrates the effective-
ness of the parallel usage of the fine-tuned Conformer-CTC-
Medium model pre-trained on the NeMo ASRSET dataset for
voice recognition and a compact Armenian language model
for text symbol generation. The primary dataset used for
the research was ”Stories-15,” which consisted of about 40
stories in Armenian with 12 readers, totaling to 15 hours.
Additionally, half of the audio data from Mozilla Common
Voice, specifically version 9.0, was incorporated, totaling to 4
hours, with 60 readers. The evaluation was based on the Word
Error Rate (WER) metric, which is discussed more in-depth in
the EVALUATION METRICS AND RESULTS section of this
paper. The WER for the Conformer-CTC model alone, without
any language model, was 68%, significantly improving to 37%
by incorporating a 10-gram language model.

C. ”Towards a Unified ASR System for the Armenian Stan-
dards” [8]

The paper ”Towards a Unified ASR System for the Arme-
nian Standards” by Chakmakjian and Wang, published in June
2022, explores the challenges and proposes a methodology
for developing an ASR system for the Armenian language,
including its two standard branches: Standard Eastern Arme-
nian (SEA) and Standard Western Armenian (SWA). Despite
their phonetic and phonological differences, the authors argue
for a unified ASR system due to shared writing and vocalic
systems, base lexicons, and high mutual intelligibility among
proficient speakers. They propose a methodology for creating a
unified ASR system, suggesting approaches like grapheme-to-
phoneme (G2P) conversion and discriminating between similar
languages (DSL) to determine the variant being spoken. While
acknowledging a slight performance gap between end-to-end
(E2E) ASR systems and hybrid models, the authors believe
the upcoming innovations will bridge this gap.



D. ”ArmSpeech: Armenian Spoken Language Corpus” [14]

Moreover, Varuzhan Baghdasaryan’s ArmSpeech corpus,
presented in May - June 2022, represents a significant contri-
bution to the Armenian ASR research field, providing a rich
dataset of annotated Armenian speech addressing the critical
need for high-quality training data. The corpus contains 6206
audio samples, which amounts to 11.77 hours of annotated
native Armenian speech (62.37% male and 37.63% female).
This multi-speaker speech corpus consists of 14 sections. The
first 13 sections consist of open-source fiction audiobooks,
while the 14th section contains speeches covering various real-
life scenarios. The audio recordings are provided in mono-
channel 16-bit format, with a sampling rate of 16 kHz and a
bit rate of 256 kbps, distributed in the lossless compression
WAV format.

E. ”Extended ArmSpeech: Armenian Spoken Language Cor-
pus” [6]

Further expanding the ArmSpeech project, Baghdasaryan
published the ”Extended ArmSpeech: Armenian Spoken Lan-
guage Corpus” paper in July - August 2022. The extended
version of ArmSpeech is based on the principle of volunteer
voice donation. Recording materials were collected from Ar-
menian news websites’ articles about lifestyle, culture, sports,
and politics. The extension materials were recorded by native
Armenian speakers, specifically, one female (36.31% of the
speeches) and three males (63.69% of the speeches). The Arm-
Speech extended version contains 5378 high-quality annotated
audio clips totaling 4 hours, making the total duration of the
ArmSpeech corpus 15.7 hours.

F. ”Armenian Speech Recognition System: Acoustic and Lan-
guage Models” [1]

Continuing the research, Baghdasaryan published the paper
”Armenian Speech Recognition System: Acoustic and Lan-
guage Models” in September - October 2022. Baghdasaryan
aims to develop acoustic and language models for the Arme-
nian language that can run in real time and perform speech-to-
text tasks on IoT devices. The methodology used in the paper
involves training the acoustic and language models separately
and then combining them to achieve higher accuracy in ASR.
The acoustic model defines the relationship between an audio
signal and the phonemes, while the language model defines the
relationship between words and their sequences. The author
used RNN-based Baidu’s Deep Speech neural network and
the KenLM toolkit to train the probabilistic n-gram language
model. The Deep Speech acoustic model was trained and
validated on the ArmSpeech corpus and tested on the Common
Voice Armenian corpus. The author reports 0.902565 WER /
0.305321 CER for the acoustic model standalone and 0.552975
WER / 0.285904 CER with the language model.

G. ”Exploring Armenian Speech Recognition: A Comparative
Analysis of ASR Models - Assessing DeepSpeech, Nvidia NeMo
QuartzNet, and Citrinet on Varied Armenian Speech Corpora”
[5]

In September 2023, Baghdasaryan published the paper,
”Exploring Armenian Speech Recognition: A Comparative
Analysis of ASR Models - Assessing DeepSpeech, Nvidia
NeMo QuartzNet, and Citrinet on Varied Armenian Speech
Corpora.” The paper’s primary objective is to evaluate and
enhance the accuracy of Armenian speech recognition by
comparing three prominent ASR models - DeepSpeech, Nvidia
NeMo QuartzNet, and Citrinet. The methodology employed
involves a comprehensive evaluation of the three ASR models
using three high-quality Armenian speech corpora - Arm-
Speech (15.7 hours), Speech corpus of Armenian question-
answer dialogues (8.5 hours), and Google’s FLEURS (12
hours). The merged dataset combines these three corpora
with a random division into training, validation, and testing
subsets, maintaining a ratio of 60-20-20%, respectively. The
results, summarized in Table 2 II, reveal the performance of
DeepSpeech, QuartzNet, and Citrinet in terms of size and error
rates.

TABLE II: Comparison of ASR Models

Model DeepSpeech QuartzNet Citrinet

Size (MB) 180 37.87 72.73
WER/CER with LM 0.3231/0.1259 0.2676/0.1092 0.0869/0.0372
WER/CER without LM 0.6302/0.1435 0.3351/0.1537 0.1941/0.0826

H. ”Enhancing Armenian Automatic Speech Recognition Per-
formance: A Comprehensive Strategy for Speed, Accuracy, and
Linguistic Refinement” [4]

As a final note, Baghdasaryan’s 2024 paper ”Enhancing
Armenian Automatic Speech Recognition Performance: A
Comprehensive Strategy for Speed, Accuracy, and Linguistic
Refinement” outlines a comprehensive strategy to improve the
performance of the previously built Armenian ASR system.
The primary objectives are to update the previously fine-
tuned Citrinet model with new datasets, optimize its speed and
efficiency for near real-time processing, and enhance the lin-
guistic quality of transcriptions by introducing punctuation and
capitalization. Therefore, the model was updated with samples
from the Common Voice corpus and data anonymously col-
lected via the armspeech.com web application. Hence, Citrinet
accomplished a WER of 13.4%, notably bypassing the model’s
previous performance of (19.41%). Moreover, the model’s
architecture underwent a reduction, resulting in a lighter model
and reducing both training and recognition durations. Although
this adjustment caused a slight increase in the WER to 18.2%,
the time taken for speech recognition experienced an average
decrease of 26%. Finally, a punctuation and capitalization
model, utilizing the Transformer Distilbert architecture, was
developed to enhance the ASR output, guaranteeing readabil-
ity, usability, and grammatical accuracy.



In conclusion, this section showcased a dynamic and evolv-
ing landscape of Armenian ASR research, characterized by
innovative methodologies, diverse datasets, and a growing in-
terest in linguistic diversity in technology development. These
works collectively contribute to the advancement of Armenian
ASR systems, laying the foundation for future innovations in
the field.

III. TOOLS

A. Whisper: An Automatic Speech Recognition System

An automated speech recognition (ASR) system called
Whisper was trained using web-sourced, 680,000 hours of
multilingual, multitask supervised data. The robustness against
accents, background noise, and technical terminology is en-
hanced by the utilisation of such a huge and diversified dataset.
Additionally, it facilitates translation into English from other
languages as well as multilingual transcription.

The encoder-decoder Transformer is the implementation of
the straightforward end-to-end Whisper architecture. The au-
dio input is divided into 30-second segments, transformed into
a log-Mel spectrum, and subsequently fed into an encoder. In
order to train a single model to do tasks like multilingual voice
transcription, phrase-level timestamps, language identification,
and to-English speech translation, a decoder is trained to
predict the matching text caption, mixed with special tokens
(see in Figure 1).

Approximately one-third of Whisper’s audio dataset is non-
English, and it is assigned the task of transcribing in the
original language or translating to English.

Unlike a considerable amount of work on voice recognition,
Whisper models learned to map statements to their transcribed
form based on the expressiveness of sequence-to-sequence
models, and were trained to predict the raw text of transcripts
without significant standardisation. Audio from the Internet
was combined with transcripts to create the pre-training
dataset. As a result, there is an extensive variety of audio
from various settings, recording configurations, speakers, and
languages in the collection. Diversity in text quality is not
as beneficial as diversity in audio quality when it comes to
training a robust model. Several automated filtering techniques
have been developed to increase transcript quality in order to
overcome this.

An 80-channel log- magnitude Mel spectrogram represen-
tation is created on 25-millisecond windows with a stride
of 10 milliseconds once all audio has been re-sampled to
16,000 Hz.The input was scaled to be between -1 and 1, with
a mean of roughly zero across the pre-training dataset for
further normalisation. The encoder works with thefollowing
specifications: with a tiny stem made up of two convolution
layers with a filter width of three and the GELU activation
function-the second convolution layer having a stride of two.
The encoder Transformer blocks are applied once sinusoidal
position embeddings have been added to the stem’s output.

Pre-activation residual blocks are used in the transformer,
and the encoder output is subjected to a final layer normal-
isation. Tied input-output token representations and learned

position embeddings are put to use by the decoder. The width
and quantity of transformer blocks are identical between the
encoder and decoder.

For the English-only models, the same byte-level BPE text
tokenizer as in GPT-2 was used. For the multilingual models,
the vocabulary was modified while maintaining the same size
to prevent excessive decomposition on other languages, as the
GPT-2 BPE vocabulary is limited to English. The decoder, an
audio-conditional language model, was trained to learn how to
resolve ambiguous audio by using longer-range text context
based on the transcript’s text history. The model learned to
predict all other tokens by masking only the training loss over
the prior context text.

The idea of training the models of different sizes was
to examine Whisper’s scalability characteristics. FP16 with
dynamic loss scaling and activation check-pointing was used
for training with data parallelism across accelerators. AdamW
and gradient norm clipping were used to train the models,
with a linear learning rate decaying to zero after a warmup
over the first 2048 updates. A batch size of 256 segments was
chosen, and the models were trained for 220 updates, which
corresponds to two to three passes over the dataset. Overfitting
is not a major concern because the model was only trained
for a small number of epochs. Moreover, no regularisation
or data augmentation was applied; instead, generalisation was
encouraged by the variety present in such a huge dataset.

TABLE III: Architecture details of the Whisper model family.

Instead of utilising the typical evaluation technique for these
datasets, which includes both a train and test split, Whisper
was assessed in a zero-shot condition with no training data
for each trained dataset, allowing for extensive generalisation
of evaluation. In speech recognition research, the word error
rate (WER) statistic is commonly used to assess and compare
systems. Before the WER computation, the text was heavily
standardised in order to reduce the penalization of non-
semantic discrepancies. [18]

B. Wav2vec Framework

Wav2vec is utilised to learn representations from un-
processed audio data on its own. A multi-layer convolutional
neural network is used in the model to encode speech audio.
Similar to masked language modelling, spans of the generated
latent speech representations are then masked. In order to
create contextualised representations, the latent representations
are loaded into a Transformer network. The model is then



Fig. 1: Overview of approach. In multilingual speech recognition and translation, spoken language identification and voice
activity detection, the sequence to sequence Transformer model was trained. The decoder is able to forecast these tasks together
by representing them as a sequence of tokens that need to be predicted once. Thus, for traditional speech processing pipeline,
a single model can substitute many different stages.

trained using a contrastive task in which the true latent has to
be identified from distractions.

To capture the latent representations in the contrastive task,
the model learned discrete speech units during training using a
gumbel softmax. In order to employ the model for downstream
speech recognition tasks, it is pre-trained on unlabeled speech
data and then refined on labelled data using a Connectionist
Temporal Classification (CTC) loss.

The model is composed of a multi-layer convolutional
feature encoder f : X7 → Z which takes as input raw audio
X and outputs latent speech representations z1, . . . , zT for T
time-steps. They are then fed to a Transformer g : Z7 → C
to build representations c1, . . . , cT capturing information from
the entire sequence. The output of the feature encoder is
discretized to qt with a quantization module Z7 → Q to
represent the targets (Figure 2) in the self-supervised objective.

A temporal convolution, layer normalisation, and a GELU

activation function are the blocks that make up the encoder.
The encoder normalises the unprocessed waveform input to
zero mean and unit variance. The amount of time-steps T that
are entered into the Transformer is set by the encoder’s total
stride.

The Transformer architecture-based context network re-
ceives the feature encoder’s output. Convolutional layer, which
functions as a relative positional embedding, was utilised in
place of fixed positional embeddings, which encode absolute
positional information. The convolution’s output is then added
to the inputs, and layer normalisation is applied after a GELU.
[3]

C. SeamlessM4T Model

SeamlessM4T is a multitask and multilingual model,
which trancribes and translates both text and speech with-
out any interruption. It recognizes, translates speech-to-text,



Fig. 2: Illustrating the structure learning contextualized dis-
course representations and a repository of quantified speech
units

text-to-text for approximately 100 languages. Moreover, it
translates speech-to-speech, text-to-speech for about 100 input
languages and 35 output languages including English.

The multitask UnitY model architecture, which can produce
translated text and speech directly, was employed for the
model. It enables automatic speech recognition, text-to-text,
text-to-speech, speech-to text, and speech-to-speech transla-
tions. There are three primary sequential components that
comprise the multitask UnitY model. Text and speech encoder
is able to recognize speech input for almost 100 languages.
After that, the text decoder converts the meaning into almost
100 different languages for text. For 36 spoken languages, it
decodes the meaning into discrete acoustic units. Pre-training
the self-supervised encoder, speech-to-text, text-to-text transla-
tion components, and text-to-unit model enhances the model’s
quality and ensures training stability. After the discrete units
are decoded, a multilingual HiFi-GAN unit vocoder is used to
translate them into voice (see in Figure 3).

Fig. 3: Multitasking UNITY

W2v-BERT 2.0, a self-supervised speech encoder, gains the
ability to comprehend speech by examining millions of hours
of multilingual speech. After decomposing the audio stream
into smaller components, the encoder creates an internal repre-
sentation of speech. Many of those sounds and characters are
found in spoken words, thus a length adaptor was employed
to roughly transform them to actual words. The text encoder

has been taught to comprehend text in approximately 100
languages and provide translational representations.

It is possible for the text decoder to accept either text or
encoded speech representations. Applications for this include
multilingual translation and tasks involving automatic speech
recognition in the same language. Through multitask training,
the speech-to-text translation model was guided by token-level
knowledge distillation, utilising the strengths of a robust text-
to-text translation model (NLLB).

To depict speech on the target side, acoustic units were
employed. The UnitY model’s text-to-unit (T2U) component,
which is pre-trained on ASR data before UnitY fine-tuning,
creates these discrete speech units based on the text output.
Following that, these discrete units are transformed into audio
waveforms using a multilingual HiFi-GAN unit vocoder.

Performance for supported low and mid-resource languages
has also greatly improved, while good performance for high-
resource languages is maintained. [7]

D. Microsoft Azure Service

The speech recognition technology from Microsoft
Azure takes advantage of the latest developments in cloud
computing and machine learning to provide reliable and ex-
pandable solutions. Azure’s voice recognition model is based
on a deep neural network architecture, which is optimised for
speed and accuracy in a wide range of languages and dialects.
Azure’s speech recognition engine is based on a Universal
Language Model. Pre-trained on data held by Microsoft, this
model captures a broad range of phonetics and dialects com-
mon to a language. Azure supports custom model integration
for certain tasks. To improve the base model’s identification
performance, these customised models are trained using audio
instances and vocabulary unique to the domain. [15]

Microsoft Research’s latest developments are driving au-
tomated speech recognition (ASR) towards end-to-end (E2E)
models. The integration of all speech recognition components
into a single model, known as E2E models, streamlines the
training process and may increase recognition accuracy. These
models can be customised for certain domains, have low
latency, and accommodate multilingual users. [12]

E. QuartzNet

The QuartzNet model by NVIDIA NeMo[11] is a novel end-
to-end neural acoustic model designed for automatic speech
recognition (ASR). This model is composed of multiple blocks
with residual connections between them, where each block
consists of one or more modules with 1D time-channel sep-
arable convolutional layers, batch normalization, and ReLU
layers.

The motivation behind developing the QuartzNet model is
to build an ASR model that achieves state-of-the-art-level
accuracy while utilizing significantly fewer parameters and
less computing power. The model is trained with CTC loss and
achieves near state-of-the-art accuracy/WER on LibriSpeech
and Wall Street Journal datasets, with fewer than 20 million
parameters, compared to previous end-to-end ASR designs,



which typically have over 100 million parameters. The best
results on the LibriSpeech dataset are achieved with the
QuartzNet-15x5 model, consisting of 15 blocks with 5 convo-
lutional modules per block. By combining the network with
independently trained language models, the model achieves
WER comparable to the current state-of-the-art.

The QuartzNet model alone achieves near state-of-the-art
accuracy/WER by building a very deep neural network
with 1D time-channel separable convolutions. The QuartzNet
model’s architecture is based on the Jasper architecture, a
convolutional model trained with Connectionist Temporal
Classification (CTC) loss. The main novelty in QuartzNet’s
architecture is the replacement of 1D convolutions with 1D
time-channel separable convolutions, an implementation of
depthwise separable convolutions. 1D time-channel separable
convolutions can be separated into a 1D depthwise convolu-
tional layer with kernel length K that operates on each channel
individually but across time frames and a pointwise convolu-
tional layer that operates on each time frame independently
but across all channels.

The QuartzNet models have the following structure: they
start with a 1D convolutional layer C1 followed by a sequence
of blocks. Each block Bi is repeated Si times and has residual
connections between blocks . Each block Bi consists of the
same base modules repeated Ri times and contains four layers:

• A K-sized depthwise convolutional layer with cout chan-
nels

• A pointwise convolution
• A normalization layer
• ReLU
The last part of the model consists of three additional

convolutional layers (C2, C3, C4). The C1 layer has a stride of
2, and the C4 layer has a dilation of 2.

To further reduce the number of parameters, the model
explores using group convolutions for the pointwise convo-
lution part. A group shuffle layer is also added to increase
cross-group interchange. Using groups allows for a significant
reduction in the number of weights at the cost of some
accuracy.

Since the model is much smaller than a model with regular
convolutions, it is less prone to overfitting. Therefore, only
data augmentation and weight decay are used for regulariza-
tion during training.

F. Citrinet[13]

Citrinet by NVIDIA NeMo is a novel end-to-end convo-
lutional Connectionist Temporal Classification (CTC) based
automatic speech recognition (ASR) model. The model aims
to bridge the gap between non-autoregressive and autore-
gressive end-to-end ASR models. Citrinet is a deep residual
neural model that employs 1D time-channel separable convo-
lutions combined with sub-word encoding and squeeze-and-
excitation.

The Citrinet encoder combines 1D time-channel separable
convolutions from QuartzNet with the squeeze-and-excitation

Fig. 4: QuartzNet BxR architecture

(SE) mechanism from ContextNet. This combination of ar-
chitectural elements significantly allows Citrinet to close the
gap between CTC and the best Seq2Seq and Transducers
models. The model achieves competitive performance on vari-
ous speech recognition datasets, including LibriSpeech, TED-
LIUM 2, AISHELL-1, Multilingual LibriSpeech, etc.

The paper ”Citrinet: Closing the Gap between Non-
Autoregressive and Autoregressive End-to-End Models for
Automatic Speech Recognition” presents experimental results
on the LibriSpeech dataset using five configurations of Citrinet
with different numbers of channels C. The models are trained
using the NovoGrad optimizer with a learning rate of 0.05,
β1 = 0.8, β2 = 0.25, and weight decay 0.001. SpecAugment
is used for data augmentation. The results show that Citrinet
performs competitively compared to Transducers such as Con-
textNet and Conformer. The largest Citrinet model achieves
a greedy WER of 6.2% on the test-other set, and with LM
rescoring, the gap between Citrinet and SOTA Transducers
for test-other is reduced to only 0.59-0.79%

The Citrinet architecture consists of a prolog block, three
mega-blocks, and an epilog module. Each mega-block begins
with a 1D time-channel separable convolutional layer with
stride 2, which progressively down-samples the input three
times in the time domain. A mega-block is composed of
residual blocks, each consisting of basic QuartzNet blocks,
repeated R times, and an SE module in the end. A QuartzNet
block is composed of 1D time-channel separable convolution



with kernel K, batch-norm, ReLU, and dropout layers.

G. LoRA: Low-Rank Adaptation

Many natural language processing applications depend
on modifying a single large-scale, pre-trained language model
for numerous downstream applications. Typically, fine-tuning
is used to accomplish this kind of adjustment, updating every
parameter in the previously trained model. One significant
drawback of fine-tuning is that the new model has the same
number of parameters as the old model. Trainable rank
decomposition matrices are injected into each layer of the
Transformer architecture using LoRA (Low-Rank Adaptation),
which significantly reduces the number of trainable parame-
ters for downstream tasks by freezing the pre-trained model
weights (see in Figure 5).

LoRA possesses several key advantages:

• Several tiny LoRA modules for various purposes can
be constructed using a shared, pre-trained model. By
swapping out matrices A and B in Figure 1, the shared
model may be efficiently frozen and switched between
assignments, greatly lowering the amount of storage
needed.

• As LoRA eliminates the need to compute gradients and
maintain optimizer states for the majority of parameters,
it improves the productivity of training and reduces the
hardware barrier to entry by up to three times when utilis-
ing adaptive optimizers. Rather, the injected, considerably
smaller low-rank matrices just need to be optimised.

• When implemented, the simple linear architecture enables
the merging of the trainable matrices with the frozen
weights, resulting in no inference lag when compared to
a fully-tuned model by construction.

• Several previous techniques, including prefix-tuning, can
be used with LoRA because it is orthogonal to them. [9]

Fig. 5: Reparametrization. Trained only A and B

IV. DATA

A. Speech Data

The Common Voice dataset consists of a unique MP3 and
corresponding text file for Armenian language. The dataset
also include demographic metadata like age, sex, and accent
that can help train the accuracy of speech recognition engines.

The dataset used in this project is structured in the
DatasetDict format provided by the datasets library,
a high-level library designed to facilitate the processing and
manipulation of datasets for machine learning applications.
The dataset is organized into three splits: training, testing,
and validation. Each split is created from a .tsv file, (which
contains multiple columns detailing attributes of the data.
Initially, each dataset split includes the following columns:

• client_id: A unique identifier for the contributor of
the audio file.

• path: The relative file path to the audio file.
• sentence: The text that was spoken in the audio

recording.
• up_votes: Number of positive ratings for the clip.
• down_votes: Number of negative ratings for the clip.
• age: The age of the speaker.
• gender: The gender of the speaker.
• accents: The accent of the speaker.
• variant: Variations of the spoken language.
• locale: The locale of the recording.
• segment: Additional segmentation information if avail-

able.
Each .tsv file is read into a pandas DataFrame. The paths

in the DataFrame are then updated to the full paths of the audio
clips. Using the from_pandas method from the datasets
library, a Dataset object is created for each DataFrame.

To focus on the primary data needed for the thesis,
unnecessary columns such as client_id, up_votes,
down_votes, age, gender, accents, variant,
locale, and segment are removed from each split.
This simplifies the datasets to include only the path and
sentence columns, making the data easier to handle and
more relevant to the tasks at hand (see in Figure 6).

In the Common Voice 17.0 dataset, the train split contains
6,180 rows of data, used for training the model. Test split
consists of 4,281 rows, utilized for evaluating the model’s
performance after training. Validation split includes 4,214
rows, used during the model fine-tuning process to validate the
results before final testing. However, for the Wav2Vec2-BERT,
STT En Quartznet15x5, and STT En Citrinet 512 models,
the fine-tuning is done on the train+validation splits, and the
model is validated on the test split each time after a number
of predefined steps.

V. MODEL FINE-TUNING AND EVALUATION

The listed models underwent fine-tuning using computa-
tional resources such as the NVIDIA GeForce GTX 1070
(8GB) GPU, provided by the American University of Armenia,
as well as the NVIDIA A100 Tensor Core GPU (80GB)



Fig. 6: The Common Voice dataset with necessary columns

utilized through the Google Colab platform. The number of
training epochs for each model can be found below:

• Whisper Small with 24 hours of Common Voice dataset
(Common Voice Corpus 16.1) - 25 epochs,

• Whisper Small with 48 hours of Common Voice dataset
(Common Voice Corpus 17.0) - 25 epochs,

• Whisper Medium with 24 hours of Common Voice
dataset (Common Voice Corpus 16.1) using LoRA - 25
epochs,

• Wav2Vec2 XLS-R with 48 hours of Common Voice
dataset (Common Voice Corpus 17.0) - 50 epochs.

• Wav2Vec2-BERT with 48 hours of Common Voice
dataset (Common Voice Corpus 17.0) - 10 epochs

• STT En Quartznet15x5 model with 48 hours of Common
Voice dataset (Common Voice Corpus 17.0) - 30 epochs
(frozen encoder) + 20 epochs (un-frozen encoder)

• STT En Citrinet 512 model with 48 hours of Common
Voice dataset (Common Voice Corpus 17.0) - 90 epochs

Whisper Small model was fine-tuned both on Common
Voice dataset with 24 hours of recording and 48 hours of
recording. The Whisper Small model was fine-tuned with the
following hyperparameters:

• per_device_train_batch_size=16,
• gradient_accumulation_steps=1,
• learning_rate=1e-5,
• warmup_steps=1,
• num_train_epochs=25,
• gradient_checkpointing=True,
• per_device_eval_batch_size=8,
• predict_with_generate=True,
• generation_max_length=225,
• save_strategy = "epoch",
• evaluation_strategy = "epoch",
• logging_strategy="epoch",
• load_best_model_at_end=True,
• metric_for_best_model="wer"

Whisper Medium model was fine-tuned on Common
Voice dataset with 24 hours of recording using LoRA. The
Whisper Medium model was fine-tuned with the following
hyperparameters:

• per_device_train_batch_size=4,
• gradient_accumulation_steps=4,
• learning_rate=1e-3,
• warmup_steps=1,
• num_train_epochs=25,
• gradient_checkpointing=True,
• per_device_eval_batch_size=2,
• predict_with_generate=True,
• generation_max_length=225,
• save_strategy = "epoch",
• evaluation_strategy = "epoch",
• logging_strategy="epoch",
• load_best_model_at_end=True,
• metric_for_best_model="wer",
• remove_unused_columns=False,
• label_names=["labels"],

LoRA model was configured with the following hyperpa-
rameters:

• r=32,
• lora_alpha=64,
• target_modules=["q_proj", "v_proj"],
• lora_dropout=0.05,
• bias="none"

Wav2vec2 XLS-R model was fine-tuned on Common Voice
dataset with 48 hours of recording. The model was fine-tuned
with the following hyperparameters:

• group_by_length=True,
• per_device_train_batch_size=8,
• num_train_epochs=50,
• fp16=False,
• gradient_checkpointing=True,
• learning_rate=1e-4,
• weight_decay=0.005,
• warmup_steps=500,
• greater_is_better=False,
• lr_scheduler_type=SchedulerType.LINEAR,
• save_strategy = "epoch",
• evaluation_strategy = "epoch",
• logging_strategy="epoch",
• load_best_model_at_end=True,
• metric_for_best_model="wer"

VI. EVALUATION METRICS AND RESULTS

A. Word Error Rate (WER)

A typical performance indicator for automated speech
recognition (ASR) systems is word error rate (WER). Since
the recognised word sequence and the reference word se-
quence may differ in length, evaluating the effectiveness of
ASR systems can be challenging. The WER operates at the
word level and is derived from the Levenshtein distance. The



initial step in solving this challenge is to use dynamic string
alignment to align the recognised word sequence with the
reference word sequence. A hypothesis known as the power
law, which describes the relationship between word error rate
and perplexity, can be utilised when investigating this problem.
Word error rate can be calculated using the following formula:

WER =
S +D + I

N
=

S +D + I

S +D + C

where:
• S is the number of substitutions,
• D is the number of deletions,
• I is the number of insertions,
• C is the number of correct words,
• N is the number of words in the reference (N = S +

D + C). [17]
This value indicates the average number of errors per ref-

erence word. The lower the value, the better the performance
of the ASR system with a WER of 0 being a perfect score.

B. Character Error Rate (CER)

An automated speech recognition (ASR) system’s per-
formance is typically measured in terms of character error
rate, or CER. Though it uses characters rather than words,
CER functions similarly to Word Error Rate (WER).

Character error rate can be computed as:
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
where:
• S is the number of substitutions,
• D is the number of deletions,
• I is the number of insertions,
• C is the number of correct characters,
• N is the number of words in the reference (N = S +

D + C). [16]
The result of CER is not necessarily a number in the range

of 0 to 1, especially when there are a lot of insertions. It is
frequently linked to the proportion of characters that weren’t
predicted correctly. A CER of 0 represents a perfect score; the
lower the value, the better the ASR system performs.

Model Name WER CER

Whisper small model (24 hours of data) 42.54 11.03
Whisper small model (48 hours of data) 36.84 10.45
Whisper medium LoRA model (24 hours of data) 38.29 8.24
Wav2vec2 XLS-R model (48 hours of data) 32.76 6.03
Wav2vec2-BERT model (48 hours of data) 12.12 2.17
STT En Quartznet15x5 model (48 hours of data) 11.75
STT En Citrinet 512 model (48 hours of data) 11.23

TABLE IV: WER and CER Scores for Different Models

VII. FRONT-END IMPLEMENTATION

The Armenian Speech Recognition initiative’s user interface
serves as the portal via which users interact with the system’s
features. Its main objectives include giving users access to
various speech recognition models, transcribing audio inputs
from recorded files or live recordings, and managing their

transcription archives in a chat-like manner. Additionally,
the front end simplifies user registration, authentication, and
subscription procedures for future alerts and updates.

A. Overall Structure

The front-end architecture comprises several parts arranged
into pages and reusable user interface components. The prin-
cipal elements consist of:

• Home Page: Offers an overview of the program and voice
recognition task options for users.

• Login Page: Provides a means for registered users to
verify their identity to gain access to customized features.

• Registration Page: Facilitates account creation and pro-
vides access to platform features for new users. Users
may establish and manage chat sessions on this page,
which lets them examine and transcribe audio recordings
of their previous exchanges.

• Services Page: Offers voice transcription services to
those not registered or who prefer not to retain their
recordings.

• Reusable Components: Consistently styled UI elements
across pages, including buttons, cards, a footer, a naviga-
tion bar, and a hero section.

B. Technologies and Frameworks

The front-end uses React.js, a popular JavaScript library
for building user interfaces. These were chosen for their
ease of implementation and simplicity, allowing- for efficient
development of dynamic user interfaces. Additional libraries
and tools used in the front-end development include:

• React Router: This component routes and navigates
various application pages.

• Styled Components: Used to apply scoped CSS style to
components.

• Axios: To send HTTP requests from the front end to the
back end server.

• React Spinners: Used to show spinning animations or
spinners while obtaining or processing data.

• React Audio Voice Recorder: An integrated feature that
records user audio.

• AudioBuffer-to-Wav: Used for converting audio buffer
data into WAV format.

C. State Management

React has several hooks, including useState and
useEffect, that were used to handle states in a front-end
application. By effectively managing component-level states
and side effects, these hooks make it possible to maintain UI
responsiveness and synchronization with data changes.

D. Integration with Back-End

Endpoints connected to the server’s API communicate be-
tween the system’s front-end and back-end parts. Axios, a
popular HTTP client, mediates this interaction and typical
fetching capabilities. These endpoints carry out a variety of
tasks, including processing requests, submitting user input, and



retrieving data. The front-end and back-end components of the
application effectively communicate and share data thanks to
this smooth connectivity.

E. Deployment with Vercel

Vercel was used as a front-end cloud to deploy the front-
end application. An outline of the deployment procedure is
provided below:

1) Setup: By linking the GitHub repository to a Vercel
project, the project was set up to function with Vercel.

2) Configuration: The deployment parameters were tai-
lored to the project specifications by using Vercel’s
configuration options. This covers establishing deploy-
ment hooks, creating custom domains, and defining
environment variables.

3) Continuous Deployment: When Vercel’s functionality
for continuous deployment is enabled, any modifica-
tion made to the GitHub repository initiates a fresh
deployment by default. This guaranteed that the front-
end application was always up to date.

Utilizing Vercel’s robust deployment infrastructure, the
front-end application was effectively deployed, allowing quick
iterations, uninterrupted delivery, and smooth scalability to ful-
fill the requirements of the Armenian voice recognition project
via this link https://armenian-speech-recognition.vercel.app/

F. UI

User-friendliness and ease of use are prioritized in the front-
end’s user interface (UI) design. The design seeks to mini-
mize the learning curve for users by offering a recognizable
and easy experience. This methodology furthermore enables
the smooth preservation of transcription history, guaranteeing
users’ ability to conveniently retrieve and handle their previous
engagements with the site.

Fig. 8: Screenshot of UI – recorded audio transcription

Fig. 9: Screenshot of UI – uploaded file transcription

VIII. BACK-END DEVELOPMENT

Java 17 and the Spring Boot framework constructed the
project’s back-end. With capabilities like dependency injection
and integrated servers, Spring Boot makes developing Java-
based web applications smoother. Maven was the build tool of
choice for controlling dependencies, assembling source code,
and encapsulating the program into executable artifacts.

A. Back-End Architecture and Dependencies

The project’s back-end architecture uses a layered architec-
ture pattern, which offers an organized and modular method
for creating software. This architecture promotes concern sepa-
ration and improves maintainability, scalability, and testability
by incorporating several levels, each addressing a different part
of the application’s functioning.

1) Architecture Overview: The back-end architecture is
structured into several layers, each serving distinct purposes:

1) Presentation Layer: Managing incoming client re-
quests, interpreting user input, and producing replies.
Controller classes that define API endpoints and oversee
request handling make up this layer.

2) Service Layer: Encapsulates the application’s main
functionality and contains the business logic and rules
relevant to it. Service classes coordinate relationships
between various components, conduct business logic,
and create use cases.

3) Repository Layer: Communicates with the database and
offers an abstraction over the data access layer. Repos-
itory interfaces and classes that encompass database
functions, including CRUD activities, querying, and data
persistence, are included in this layer.

4) Utility Layer: Contains utility classes and helper func-
tions, converters, and other utility functions that provide
common functionality across the program.

https://armenian-speech-recognition.vercel.app/


Fig. 7: The services page for individuals who have not registered or prefer not to retain their transcription records.

5) Configuration Layer: Consists of classes and config-
uration files that provide dependencies, environment-
specific configurations, and application settings. Files,
including bean configurations, security settings, and ap-
plication properties, are included under this tier.

Fig. 10: Back-End Architecture

2) Dependencies: To allow particular features and capabili-
ties, the back-end depends on several dependencies, including:

• Spring Boot Starter Data MongoDB: Integrates Mon-
goDB with Spring Boot apps to streamline database
access and administration.

• Spring Boot Starter Web: Offers all the necessary
parts and setups for using Spring Boot to create web
applications, such as embedded servers, HTTP request
processing, and RESTful APIs.

• Lombok: During compilation, automatically generates
getters, setters, constructors, and other common methods,
reducing boilerplate code in Java classes.

These Maven-managed dependencies are automatically re-
solved and fetched from Maven repositories during the build
process.

Following the layered architectural pattern and using these
dependencies results in a well-organized back-end that benefits
future development, code quality, and maintainability.

B. Project Structure

The backend project has distinct packages for each of the
application’s components and follows to a consistent directory
structure. The primary packages consist of:

• constants: Contains constants used throughout the
application.

• controller: Contains controller classes responsible
for handling HTTP requests and defining API endpoints.

• model: Contains entity classes representing database
collections.



• repository: Contains repository interfaces for man-
aging database operations.

• service: Contains service classes containing business
logic.

• util: Contains utility classes.

C. Endpoints

The backend API exposes the following endpoints:
• /users/{userId}: Retrieve user information by user

ID.
• /users/{userId}/chats: Retrieve chatLogs associ-

ated with a specific user by user ID and given chat title.
• /audio/{fileName}: Access audio files by file name.
• /process-audio: Process audio data for transcrip-

tion.
• /process-audio-link: Process audio data from a

provided YouTube link.
• /process-audio-link/{userId}: Process audio

data from a provided YouTube link for a specific user.
• /process-audio/{userId}: Process audio data for

a specific user.
• /login: User authentication and login.
• /register: User registration.
• /verify: User email verification.
• /subscribe: Save new subscribers to the database for

future updates.

D. Audio File Storage and Processing

1) Audio File Storage: To compensate for database size
constraints, audio files for registered users are not kept in
the database directly. Rather, they are stored on the server
in a different directory. For every user, the database contains
simply the file names of their audio recordings. The audio files
are obtained from the server directory using their file names
when necessary.

2) Audio Processing: Processing audio data from several
sources, including front-end YouTube URLs, recorded audio,
and uploaded audio files, is part of the project. The relevant
Python script transcribes the audio, depending on the model
selected. If the Azure model is chosen, Azure is contacted
via an API call to process the audio. In every other case,
the Python script for the model is executed locally. Upon
processing the audio, the text that has been identified is
forwarded to the front end so that the user may view it.
WAV, MP3, M4A, FLAC, and AAC are among the audio
formats now supported by audio processing capabilities. For
transcription, users can upload audio files in any of these
formats.

E. User Registration and Login

To utilize the Chat-like functionality on the website, users
must first register. Once registered, they can use chats and
store their recordings and transcriptions for later use. Users
can utilize the services page to process their audio as a one-
time action, after which the audio files are deleted.

Users must decide on a password and provide their email
address to register. After registering, Java Mail Sender sends
an email to the user’s address with an activation link. The
user may verify their email whenever convenient because the
verification link does not expire after a certain time. The user
cannot access their account until they click the activation link.
Upon clicking the link, the database’s verified state for the
user changes to true, allowing a successful login.

F. Password Security

Spring’s BCryptPasswordEncoder class is used to securely
store registered users’ passwords. This class encrypts pass-
words using a one-way hashing function so that decoding the
original password from the hashed value is computationally
impossible. Upon logging in, the password entered by the user
is hashed using the same algorithm, and the resultant encoded
value is cross-referenced with the hashed password saved in
the database. The user can only log in successfully if the two
hashed values match.

IX. MONGODB DATABASE

A. MongoDB Atlas

The project uses a MongoDB database housed on the
extensive cloud-based database service MongoDB Atlas. The
deployment and administration of databases across several
cloud service providers, including AWS, Azure, and GCP,
is made easier by MongoDB Atlas. MongoDB Atlas was
selected mainly for its effectiveness in setting up, running,
and growing MongoDB in the cloud. This made it the perfect
fit for our requirements, particularly since we only keep the
bare minimum of user data—such as chat names and logs, and
only email addresses are kept for the subscribers’ collection.

1) Cluster Details: This project’s MongoDB cluster is
housed on AWS in the Frankfurt area (eu-central-1). Version
7.0.8 of MongoDB is installed on it. The cluster offers high
availability and data redundancy with three nodes as a replica
set.

The cluster’s backup capability is not in use at the moment.
This MongoDB cluster is primarily used to store and manage
data for the Armenian Speech Recognition system; hence, it
is not connected to any app services.

2) Plan Tier: The M0 Sandbox shared tier, intended for
learning and experimentation, provides resources to the Mon-
goDB cluster. This tier offers simple setup choices and is
appropriate for our small-scale project. The M0 Sandbox tier
is free, with no subscription fees required. It provides:

• Storage capacity 512MB.
• Shared RAM and vCPU resources.
• The option to upgrade to dedicated clusters for full

functionality and performance enhancements.

B. Users Collection

The ‘Users‘ collection stores information about registered
users of the Armenian speech recognition system. Each doc-
ument in the ‘Users‘ collection represents a user and contains
the following fields:



Fig. 11: UML Diagram

• id: A unique identifier for the user document.
• firstName: The first name of the user.
• lastName: The last name of the user.
• email: The email address of the user.
• password: The user’s hashed password, encrypted using

BCryptPasswordEncoder.
• chats: An array of chat objects containing the user’s chat

history.
• verified: A boolean value indicating whether the user’s

email address has been verified.
• class: The class name of the user object.

C. Subscribers Collection

The ‘Subscribers‘ collection stores information about sub-
scribers to the Armenian Speech Recognition system. Each
document in the ‘Subscribers‘ collection represents a sub-
scriber and contains the following fields:

• id: A unique identifier for the subscriber document.
• email: The email address of the subscriber.



Fig. 12: Structure of the MongoDB Database

X. CLOUD DEPLOYMENT

The application’s back-end server is set up on the cloud to
guarantee scalability, dependability, and accessibility. There
are several benefits to utilizing cloud infrastructure, such as
cost-effectiveness, flexibility, and simplicity of management.
Due to restrictions in AWS free tier offers, the research
resulted in the choice of Azure Cloud, which gave all new
customers a $200 credit to test out its services for 30 days.
Azure was chosen due to its wide feature set and beneficial
resource distribution, as the Python scripts operating in the
back-end required at least two virtual CPUs and two gigabytes
of RAM.

1) Virtual Machine Configuration: A virtual machine (VM)
instance running Linux was chosen for best performance and
resource allocation. With 4 vCPUs and 16 GB of RAM, the
virtual machine instance has adequate processing power and
memory to run code written in Python and perform audio
processing tasks effectively.

An Azure Virtual Machine (VM) instance hosting the back-
end server is configured as follows:

• Operating System: Linux (Ubuntu 22.04)
• Size: Standard D4s v3 (4 vCPUs, 16 GiB memory)
• Public IP Address: 20.52.101.91
• DNS Name: asr.germanywestcentral.cloudapp.azure.com
This VM configuration provides sufficient computational

resources and network connectivity to support the back-end
server, ensuring reliable performance and availability for the
application.

2) Choice of Location: A deliberate choice was taken to
strategically host the Azure Virtual Machine (VM) in the
Germany West Central zone to reduce latency and maximize
customer performance, especially in Armenia. To lower net-
work latency and guarantee quicker response times for requests
sent to the back-end server, we chose a data center site
geographically close to the desired user base.

The decision to host the Azure virtual machine (VM) in
Germany West Central is a calculated move to maximize effi-
ciency, reduce latency, and improve user experience for anyone
visiting the application from Armenia and the neighboring
areas.

XI. CONCLUSION AND FUTURE WORK

In conclusion, this project has demonstrated effort in creat-
ing Armenian automated speech recognition (ASR) systems.
Through comparative analysis, models like Wav2vec2-BERT,
STT En Quartznet15x5, and others exhibit low Word Error
Rates (WERs), indicating robust performance in accurately
transcribing spoken language, particularly valuable for appli-
cations requiring linguistic precision and reliability.

While Whisper models show relatively higher error rates,
their progress with limited training data underscores the po-
tential for improvement through increased data exposure. The
integration of LoRA conversion in Whisper models demon-
strates a promising balance between resource consumption
and performance enhancement, highlighting the potential for
efficiency gains without excessive computational overhead.

The evolvement of Armenian ASR technologies suggests a
path towards more inclusive and universally accessible systems
that excel in standard benchmarks and exhibit adaptability in
resource-constrained environments. Future model-building and
fine-tuning advancements for Armenian ASR should prioritize
integrating more capable language models for better grammat-
ically correct outputs.

Moreover, addressing current limitations, future research
must concentrate on enhancing ASR accuracy by enabling
seamless dialect recognition and supporting the stability of
outputs despite acoustic variations such as background noise
and audio quality discrepancies. Leveraging advanced signal
processing algorithms and deeper neural network architectures
aligned with human auditory perception can further refine
ASR systems’ ability to discern speech amidst challenging
auditory conditions, ultimately advancing the practicality and
effectiveness of automated speech recognition systems.
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