Building a Retrieval-Augmented Generation (RAG) System for Academic
Papers

Report Prepared by Artashes Mezhlumyan
in part fulfillment of the degree requirements
for the Degree of BS in Data Science
in the Zaven and Sonia Akian College of Science and Engineering
*Supervisor: Anna Grigoryan *Coordinator: Habet Madoyan

Abstract—This report presents the final results of our capstone
project, which focuses on developing a Retrieval-Augmented
Generation (RAG) system designed for navigating through the
vast amount of academic papers. The Retrieval-Augmented
Generation (RAG) system enhances search capabilities by inte-
grating search strategies for retrieving data and LLM models
for generating text, addressing the limitations of traditional
search engines like Google, which may struggle with interpreting
complex, scholarly queries and providing contextually relevant
academic insights. Our proposed RAG system seeks to address
these challenges by leveraging advanced techniques in document
retrieval and natural language processing to offer precise, contex-
tually relevant excerpts in response to user queries. The system
utilizes a 2-step vector search using the vector search with cosine
similarity metric on an HNSW index on the paper’s abstracts
and the papers itself to pass only relevant information to LLM;
this enables enhanced data retrieval and contextually aware text
generation. This report shows our achievements in implementing
various system components, including document retrieval, search
methods, text generation, and initial performance evaluation. We
experimented with a number of search strategies for knowledge
retrieval, found our best-performing RAG search style, experi-
mented with a number of LL.Ms, and made the final RAG system.
We also discuss the encountered limitations, insights gained, and
potential avenues for further improvement.

I. LITERATURE REVIEW
A. Overview

The retrieval-augmented Generation (RAG) system is ini-
tially designed to overcome the limitations of traditional
search engines like Google. Sometimes, search engines fail to
interpret complicated queries, returning unrelated information
to the user. However, the RAG system enhances search capa-
bilities by retrieving relevant information to the user’s query
and passing it to LLM, which generates contextually relevant
text responses.

B. How RAG system works

Retrieval-augmented generation has a two-step operation
process: retrieval and generation. Firstly, a vector search is
conducted on data using similarity metrics. The first step
quickly filters relevant information about users’ queries and
passes it to the chosen Large Language Model. Once relevant
documents are retrieved, the generation phase begins. The
chosen Large Language Model generates answers to queries
based on retrieved data and returns comprehensive and coher-
ent answers.

C. Applications of RAG Systems

1) Customer Support: Retrieval-augmented generation sys-
tems are widely used in the Customer Support field. RAG sys-
tem uses customer data to give personalized responses based
on purchase history, location, past issues, and communication
preferences. This kind of RAG application is widely used
in production. Vivid examples are Clinc and Kasisto, which
deliver exceptional automated service across their channels.

2) Automatic Content creation: RAG empowers to generate
posts for social media blogs or webpage content using custom
knowledge bases. Tools like Quill, Writesonic, and Wizdom
use RAG to create creative content.

3) Document Summarization: RAG can efficiently summa-
rize the most essential or salient point by combining text
and transcripts. Apps like Otter or Krisp already use RAG
to highlight critical talking points from meetings.

4) Recomendation Systems: RAG takes recommendation
engines to the next level by scanning customer data to give
ultra-relevant suggestions. Platforms like Spotify and Overcast
explore RAG to factor taste profiles into suggestions.

D. In-depth Examination of the RAG System

Beyond the practical applications, the academic research

around Retrieval-Augmented Generation (RAG) systems offers
significant insights into their potential and limitations. A piv-
otal study titled [1]Retrieval-Augmented Generation for Large
Language Models: A Survey reviews the evolution of RAG
systems. They highlight how RAG addresses LL.M’s traditional
challenges, such as hallucinations or outdated knowledge.
Integrating the RAG system with an external database for
specific tasks enhances accuracy and credibility and allows
continuous knowledge updates with domain-specific integra-
tions. The paper also provides a comprehensive overview of
RAG architecture, from simple implementation to advanced
approaches.
Similarly, a study conducted by Patrick Lewis and Ethan Perez,
named [2]Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks, presents the application of RAG in open-
domain Question-Answering tasks, setting new benchmarks
against conventional seq2seq and task-specific architectures.
The study represents how RAG can be optimized to produce
more specific and diverse applications, considering all the
LLMs’ issues.

Moreover, technical advancements in vectorization and han-
dling semi-structured data are discussed in [3]A Method for
Parsing and Vectorization of Semi-structured Data used in
Retrieval Augmented Generation study. The paper represents
a method that significantly enhances the precision, reliability,
and diversity of LLM outputs. It also introduces how to work
with diverse document formats and make a structured database
for RAG retrieval.

These studies underscore how RAG pushes the boundaries
of traditional LLM text generation and helps to create more
dynamic, accurate, and user-specific applications.

E. Conclusion

RAG system effectively combines retrieval techniques
and text generation, offering robust solutions for various
information-intensive applications. Outperforming traditional
search engines and being widely used in production applica-
tions. Taking into account all these above-mentioned points,
the RAG system has a lot of promises and is worth diving
deep into.

II. DATA COLLECTION

We have identified an up-to-date dataset hosted on Kaggle
by Cornell University, named [4]”arXiv dataset”. This dataset
includes comprehensive details about academic papers on
arXiv.org, including paper IDs, abstracts, authors, and more.
The ’arXiv dataset’ includes over 2 million academic papers
in math, statistics, electrical engineering, quantitative biology,
economics, and more. This diversity and volume ensures that
our system has a strong foundation for retrieving and gener-
ating content.” This discovery is critical for our project, as it
provides a rich source of current academic content, enabling
our RAG system to operate with the latest research papers.
Utilizing this dataset will significantly enhance our system’s
ability to deliver relevant and timely academic information.
Moreover, We implemented Python code for pdf retrieval,
which uses the Python “requests” library to send requests to
arxiv.org with appropriate paper IDs and download the desired
pdf. In this manner, We have downloaded the whole pdf dataset
from arxiv.org.

III. METHODOLOGY

A. Overview of Methodology

This section outlines the methodology used to develop
our RAG system, focusing on data retrieval, preprocessing,
semantic search, and optimization techniques to handle large-
scale academic data efficiently. As we are using LLMs for
our system, we have input limitations and need to input to the
model limited text, which is related to the user’s query. Here,
RAG comes into use. In the Retrieval-Augmented Generation
(RAG) system, we emphasize using search functionalities to
efficiently navigate and extract relevant information from a
vast corpus of academic papers. The next step is to find an
efficient search strategy for our RAG system.

B. Data Retrieval and Preprocessing

1) Keyword Search: We initiated our experiments by fo-
cusing on keyword searches and leveraging the rich dataset to
test and refine our document retrieval component. This step is
critical in understanding the dynamics of efficient information
extraction and sets the stage for more complex retrieval and
generation tasks ahead. During our experiments, we found that
the limitations of keyword search are a significant burden for
our RAG system as keyword search does not always work
precisely. For example, We implemented the Natural Language
Toolkit (NLTK) Python library for keyword search and got the
following results.

Hatehing papers:

- Title: A Survey of Deep Learning Techniques in Natural Language Processing
Abstract: This paper provides a comprehensive survey of deep learning techn

- Title: Applying Recurrent Neural Networks for Sentiment Analysis in NLP
Abstract: This study explores the effectiveness of recurrent neural network

- Title: Challenges and Opportunities in Deep Learning for NLP
Abstract: This paper discusses the challenges faced and the opportunities p

- Title: Syntax-aware Neural Machine Translation using Deep Learning
Abstract: This research investigates syntax-aware neural machine translatio

— Title: Deep Learning for Named Entity Recognition in Biomedical Texts
Abstract: This work focuses on leveraging deep learning methods for named e

Fig. 1. When searching for “deep learning in natural language processing,”
We got pretty good results.

Matching papers:
- Title: Applying Recurrent Neural Networks for Sentiment Analysis in NLP
Abstract: This study explores the effectiveness of recurrent neural netwo

- Title: Challenges and Opportunities in Deep Learning for NLP
Abstract: This paper discusses the challenges faced and the opportunities

Fig. 2. However, We get worse results when We shorten my query to
“deeplearning in NLP;” which has the same meaning as the last query.

Initially, a keyword search was employed to establish a base-
line for document retrieval efficiency. However, its limitations
became apparent, as it often needed to capture the context of
queries, leading to inaccurate or irrelevant results. We bumped
into the limitation of simple keyword search and decided
to give a chance to other search methods. These challenges
necessitated a transition to semantic search, a more advanced
method that interprets the underlying intent of queries through
natural language understanding.

2) Transition to Semantic Search: Building on our initial
experiments, we transitioned to semantic search, known as
vector search, to enhance the sophistication and effectiveness
of our retrieval process. Instead of traditional keyword match-
ing, semantic search understands the contextual meaning and
the intent behind a user’s query. Instead of relying solely on the
exact words, semantic search uses advanced natural language
processing (NLP) techniques and machine learning algorithms
to analyze and interpret the query’s context. It then maps this
query to a high-dimensional space where the query and the
documents in the search index are represented as vectors.
The semantic relationships between words and phrases are
encoded in these vectors, enabling the search system to retrieve
documents that are contextually related to the query, even if
they don’t contain the exact words. Vector search (semantic
search) involves converting text data into high-dimensional
vectors representing the words’ semantic meaning, enabling

the system to perform searches based on conceptual similarity
rather than mere keyword matching.

C. Semantic Search Implementation

1) Vector Embeddings: To implement semantic search, we
first convert text data into numerical representation. There
are various approaches for text embeddings, starting from
Word2vec and continuing with more advanced techniques.
We experimented with the Word2Vec model in our early
stages of data vectorization. Word2Vec, a pioneering vector
embedding model, is adept at capturing semantic and syn-
tactic word relationships but falls short of comprehending
the full scope of sentence-level or paragraph-level context.
This limitation is crucial in academic settings where precision
and nuanced understanding are paramount. We went beyond
that and decided to use transformer models for this task.
We employed the SBERT model [5]’multi-qa-MiniLM-L6-
cos-v1” for vectorizing our data, leveraging its capacity to
understand and encode the nuanced context of academic
texts. The model is based on a distilled version of BERT,
which is significantly smaller and faster. This makes it more
practical for real-time applications. Also, This model is fine-
tuned explicitly for question-answering and semantic similarity
tasks, making it highly effective at understanding and encoding
nuanced academic texts. Despite its strengths, this approach
faced limitations, particularly concerning token limits, which
could restrict the depth of text analysis. A token is a unit
of text that the model processes, and our chosen model can
process 512-word pieces at once. We have many cases where
the text is longer than that size. We addressed this challenge
by calculating the mean vector of our abstract vectorizations,
effectively summarizing the semantic essence of texts while
bypassing token limitations. This strategy allowed us to main-
tain the integrity of semantic search while accommodating the
extensive content of academic papers. We saved the vectors
in CSV format. Each entry in the CSV file contains the
vector representation of an abstract alongside the original
abstract text and the paper’s unique ID. This approach enables
efficient retrieval and utilization of information during the
vector search, allowing for quick and accurate matching of
user queries with relevant academic content.

D. Implementation of Semantic Search

When a user asks a question, our RAG system transforms
it into vectors and measures the similarity with our vectorized
knowledge base through our selected model. The program then
seamlessly integrates the matched information with the user’s
query, forwarding this context to our large language model.
Employing semantic search enabled the RAG system to align
more closely with user queries by understanding contextual
relationships within the data, significantly enhancing retrieval
accuracy.

E. Search Optimisation

1) Initial Vector Search: Naiv implementation of vector
search is scalable as its calculation of cosine similarity of

Documents

Retriever Generator

Document encoder

Search index

*’[Query encoder H Vector search LLM Output
Input

Fig. 3.

query and each data point for every search attempt; this
naive search approach can’t be implemented at a billion scale,
leading us to explore vector indexing solutions - to save and
search vectors efficiently. An efficient solution for the billion
scales is the vector index. A vector index employs specialized
data structures (such as approximate nearest neighbor (ANN)
techniques like Locality-Sensitive Hashing (LSH) and HNSW)
to organize the vectors in a way that accelerates the search pro-
cess. The critical difference lies in performance and scalability:
naive vector search is simple but slow. It scales poorly with
large datasets, while vector indexing introduces complexity in
data organization to achieve much faster search times, making
it viable for large-scale and real-time applications. An excep-
tionally compelling illustration of vector indexing can be found
[6]here. We got our hands dirty and started experimenting with
different libraries. We’ve conducted extensive experimentation
with the SBERT library, utilizing cosine similarity for semantic
search, and explored the FAISS library by implementing a
FlatIndexL.2 search. Additionally, we experimented with the
HNSW library, employing searches based on cosine similarity,
Inner Product (IP), and L2 distances. To further enhance
our system’s capabilities, we experimented with combining
these search methodologies through hybrid search methods,
aiming to leverage the strengths of each approach for improved
performance and accuracy in retrieving relevant academic
content.

2) Advancements in Vector Search (Use of HNSW): HNSW
emerged as the optimal method due to its search speed and ac-
curacy balance. Compared to other methods like FlatindexL2,
HNSW provided faster response times without sacrificing ac-
curacy based on our primary validation of anecdotal examples.

Now that we have all the pieces for the RAG system, our
next step is to integrate them seamlessly.

FE. Two-Layer Vector Search

1) Handling Large Text Data: We are searching for an
abstract level to find which papers are relevant to users’
queries. As we discussed, we are implementing the cosine
similarity search (using the HNSW library) on our abstracts
of papers, which returns relevant papers ’ IDs. Like in all
Retrieval-Augmented Generation applications, the next step is
to pass the paper’s text to the chosen LLM along with the

Abstracts

| Abstract encoder
(SBERT)

HNSW index

ery encoder |

. " Qu
mput—:\r (SBERT) ’—b Vector Search LLM =——>output

Fig. 4.

user’s query. However, academic papers are pretty long in text
size; sometimes, only one small paragraph is relevant to the
user’s question. Also, it is not always a good idea to input as
much text as possible to the Large Language Model as it can
hallucinate or generate answers that are out of context. For
example, one of the best models today - ‘gpt-3.5-turbo-0125’
has a maximum input of 16,385 tokens per request (one of
the biggest, if not the most significant input size today); in
our case, the input can fit a maximum of 3 papers, which
sometimes can be not enough. It would be better to fit ten
papers but with the top 5 the most relevant chunks of text
from each paper. We implemented a two-layer search system
to address the token limitations of large language models. The
first layer identifies relevant papers, while the second narrows
down to the most pertinent text excerpts, ensuring focused
inputs to the language model.

2) Optimising Search for Relevance: So, we decided to add
a second layer of search. We implemented vector search, which
compared the user’s query to chosen pdf chunks, which out-
puts top similar chunks from our pdfs. This two-layer search
method optimizes handling large text volumes and enhances
the system’s accuracy in providing highly relevant responses,
which is particularly effective for complex academic inquiries.
See Fig.5 and Fig.6:

Vector Search (cosine
similarity)

—fp LM s—output

) Query encoder (SBERT - 512
input > dim vector) [—

Fig. 5.

IV. EVALUATION OF VECTOR SEARCH

We generated a synthetic dataset of questions to understand
how well our Vector Search works. We generated a synthetic
dataset resembling typical user queries to simulate real-world
applications. This approach allowed us to control the vari-
ability and complexity of the queries, ensuring a robust test
of our system’s capabilities. We input each pdf document
with proper instructions into the gpt-3.5 model APWe to
generate these questions and generated 200 synthetic sample

[
Papers devided to
chunks

[Chunk encoder |
(SBERT)

HNSW index

Query encoder

|nput—-:>k (SBERT) ”—b Vector Search —’—> LLM ——>output

Paper Id's
Fig. 6.

questions. Initially, We entered each question individually into
our RAG system to see if it could identify relevant papers
related to those queries. In evaluating vector search, we used
precision-at-k (where k=3) as a metric, noting that in 199/200
cases, the correct paper appeared in the top 3 results. This
demonstrates a precision rate of 99.5%, significantly above
industry benchmarks. Further investigation is needed for the
outlier to understand the discrepancy. Is the information in the
paper’s abstract different from the main topics discussed in the
paper, or does the abstract not accurately reflect the content of
the paper? These questions led to further inquiries, suggesting
that the initial search performance met our expectations.

Going forward, we know that the First layer of our RAG
system works well; however, do paper abstracts contain
enough information about full papers? Are they similar to
full documents, or are abstracts descriptive enough to rely on
them? We computed cosine similarity scores across segmented
text chunks to assess the representativeness of abstracts versus
full papers. These were then averaged to derive a mean
similarity score per paper, which was visualized alongside a
confidence interval to assess the normal distribution of the data
We have used our abstract embeddings and PDF embedding
chunks. After calculating the similarity of PDF chunk by
chunk to abstract and then taking the average similarity of
each PDF document, We visualized the results.

Average Similarity with Confidence Intervals

verage_similarity

Fig. 7.

From an eyesight view, the papers are similar to abstracts;
however, We have drawn confidence interval lines using
empirical rules to understand our visualization results better.
Confidence intervals were calculated using the empirical rule
to determine if the similarity scores were normally distributed.

This statistical approach highlighted outliers, suggesting cases
where abstracts may not adequately summarize the full papers.
Such findings are crucial for refining our indexing strategies;
they tell us whether most values lie in a normal distribution.
Analyzing the distribution of paper vs abstract contextual
relatedness, the abstracts cover most of the context of the
paper. We can see that only one pdf document is far from
the confidence interval lines. After carefully examining this
document, We see a big vocabulary difference between the
abstract and the paper. However, our vector search successfully
found this paper anyway.

V. CHOSEN LLM’s

To evaluate the results of our RAG system, we decided to
use several large language models for more diverse results.
We decided to take [7]‘gpt-3.5-turbo-0125" from the top of
industry models and started to look for its competitors. The
main competitors of OpenAWe models are LLM’s made by
Google and Meta. We chose [8]’Gemini-pro’ from Google’s
model collection, and we took [9]‘Meta-Llama-3-8B’ from
Meta. For more widespread analysis, we selected [10]Cohere
as a fast-growing, famous LLM and considered [11]‘google-
flan-t5’ one of the famous retired LLM models.

VI. EVALUATION

We generated 100 sample questions to evaluate our models,
inputting each pdf document with proper instructions into
the gpt-4 model. Implementing our RAG system with every
chosen LLM, We inputted 100 sample questions for every
LLM case and documented the results.

Many famous evaluation metrics and algorithms are in the
market, from truth measurement multitasking evaluation to
sentence completion evaluations. However, in our case, we
first need to understand how informative or truthful LLMs
are. First, we need to be sure that the question is being
answered from the correct information source. From then
on, we decided to search metrics that would provide us
with informativeness, instructiveness, or explanatory scores.
In evaluating the performance of a Retrieval-Augmented Gen-
eration model on Large Language Models (LLMs), metrics
were carefully chosen to assess different aspects of content
quality. Information Density was calculated by counting non-
stopword tokens per 100 words to gauge content richness.
Subject Proportion was measured using SpaCy’s POS tagging
to determine the focus, and NER Proportion utilized SpaCy’s
NER to track the relevance and presence of critical entities in
the responses.

A. Information Density

Firstly, Information Density was calculated by normalizing
the count of unique non-stop words by the total number of
words, measuring how much unique information the model
generates per 100 words.

B. Subject Proportion

The Subject Proportion metric was established by identify-
ing subject words using part-of-speech tagging with SpaCly.
This involved calculating the proportion of unique subject
words to the total number of words in the response, offering
insights into the subject focus and variability in the text.

C. NER Proportion

Lastly, the NER Proportion was determined by applying
Named Entity Recognition (NER) to identify entities in the
text and computing the proportion of these entities relative to
the total word count. This metric helped me understand how
well the model captures and generates critical entities within
the response context. Together, these evaluation techniques
allowed for a comprehensive analysis of the model’s output,
facilitating a detailed comparison with other models to gauge
performance efficacy in various aspects.

1) GPT Evaluation:

a) Information Density: Starting with the most widely-
used language model family today, GPT, we find that the in-
formation density in the results is moderate, typically ranging
from 30% to 60%. This suggests that the majority of responses
possess a medium level of detail. Regarding the density of
abstract information, our measurements show that it is slightly
less informative than the responses from GPT, indicating that
GPT generally performs well.

b) Subject Proportion: For Subject proportion, most re-
sponses are concentrated around a proportion of 5%, suggest-
ing a focused but not overly detailed approach to subjects.
However, seeing a similar pattern for abstract subject propor-
tion, GPT fulfilled our expectations.

¢) NER Proportion: The GPT model’s responses gen-
erally contain fewer named entities (like names of people,
organizations, or locations) than other parts of the content.
Outliers indicate some responses where the model includes
a significantly higher number of named entities, but such
responses are exceptions rather than the rule. Again, we see
that the abstract’s NER proportion has the same trend as
the Answer’s NER proportion, showing that as many named
entities were present in the abstracts, the same number of
named entities were present in GPT’s response.

Fig. 8.

2) Cohere Evaluation:

a) Information Density: Continuing with the analysis of
the Cohere model, the information density results are notably
lower than those of GPT, peaking at 30%. Furthermore, the
density of abstract information reaches up to 50%, suggesting

that Cohere’s responses generally contain a lower level of
information density.

b) Subject Proportion: However, the proportion of Co-
here’s answers peaks at 3% to 7%. These numbers indicate
that the model concentrates on the main subjects within a
narrow range. The Abstract’s subject proportion repeats the
same trend, indicating that the model answered within the
same subject range. This suggests a certain level of specificity
and consistency in addressing the central topics within the
responses.

c¢) NER Proportion: Like GPT, Cohere has close results
for NER proportion, indicating that this model tends to gen-
erate few named entities, as it repeats papers’ named entities
and does not go off the topic.

3) Flan-T5 Evaluation:

a) Information Density: Discussing the vintage ’google-
flan-t5’ model, it underperforms across all metrics. Yes, infor-
mation density ranges up to 20%, but it is far from abstract
info density. It tells us that T5’s answers have very different
info Density than the papers.

b) Subject Proportion: Subject proportion peaks at O
to 10%, where the abstract subject proportion should peak.
However, some outliers tell that the model can get off the
track.

¢) NER Proportion: The ner proportion trend also has
outliers, showing that the model used entities named differ-
ently than the abstract.

,,,,,,,,,,,,,,,,

4) Gemini Evaluation:

a) Information Density: Returning to today’s competi-
tors in the LLM world, we can look at ’Gemini-pro’ results.
As we know, Gemini is the main competitor of the GPT
models family, and We will compare them. Unfortunately,
Gemini has low info density, peaking from 10% to 20%.
Unfortunately, abstracts’ information density has a different
trend and does not match Gemini’s answer density. Anyways,
this is significantly lower than the GPT results.

b) Subject Proportion: However, the subject proportion
of Gemini copies the trend of the abstract’s results, showing
that the exact subject words were kept as in the original
abstract. It’s worth mentioning that in this aspect, the Gemini
had nearly the same results as GPT, which was unexpected.
Sorrowfully, Gemini-generated answers could have been better
in Named entities, generating answers containing many named
entities or being too generous and getting out of context named
entities.

¢) NER Proportion: Gemini has a low NER proportion
and a lower distribution than GPT or Cohere, indicating a
less frequent mention of named entities. Gemini’s performance
falls short when measured against GPT, which has taken the
lead in this comparison.

Fig. 11.

5) Llama3 Evaluation:

a) Information Density: Finally, we tested ’llama3’ as
a product from another industry giant; the outcomes were
unfortunately underwhelming. The information density in the
model’s answers ranged up to a mere 0.40%(far away from
abstract information density results). It reached its top near 0,
still worse than the older ’google-flan-t5’ performance.

b) Subject Proportion: Likewise, the subject proportion
hovered close to zero, far from the abstract’s results.

¢) NER Proportion: In the same manner, we have a lot
of outliers for the NER proportion. Initially, our abstracts were
not reached in their NER proportion results, and we expect to
see the same results in LLM answers as they should stay on
the topic and generate new words, which was not the case for
Gemini. It went off the track in all positions.

Fig. 12.

D. To Conclude

To conclude, the GPT model had the best overall perfor-
mance. It showed moderate information in its answers and a
good focus on the main subjects, without too many details.
It didn’t often use named entities, but its competitors did not
stand out with other metrics. The model generally coped well
with the paper’s information density, subject proportion, and

paper-named entities. GPT outperformed other models in bal-
ancing detail and clarity, particularly regarding subject focus
and information density. This suggests that GPT’s algorithms
are better suited for applications requiring nuanced content
generation, such as academic or technical writing, where detail
and accuracy are paramount.

VII. SCALABILITY AND LIMITATIONS

Exploring the scalability of various large language models
(LLMs) that we have chosen could potentially be integrated
into our Retrieval-Augmented Generation system. We assess
their performance based on the context window size, inference
time, cost efficiency, API availability, and model parameters.
The following table summarizes the capabilities and limita-
tions of each model, providing insights into their suitability
for academic search and generation tasks:

Context Inference Cost per 1M Cost per 1M | Api Model
Window Time token input token output | availability | parameters

Gpt-3.5-turbo-0125 | 16,385 2.4 sec $0.50 $1.50 Yes 1758
tokens

Cohere-command-r | 128,000 | 10.4 sec $0.50 $1.50 Yes 35B
tokens

Gemini-pro 128,000 2.9 sec 7% 21$ Yes 50T
tokens

Meta-Llama-3-8B 8,200 0.5 sec 0% 0$ No 8B
tokens

Google-flan-t5-base | 512 0.23 sec 0% 0% No 250M
tokens

Fig. 13.

Performance Without Our RAG System To evaluate the raw
performance of each LLM further, we measured the end-to-
end response times:

o GPT-3.5-Turbo-0125: 4.15 seconds
o Cohere-Command-r: 8.72 seconds
e Gemini-Pro: 8.71 seconds

e Meta-Llama-3-8B: 23.17 seconds

¢ Google-Flan-T5-Base: 5.69 seconds

Discussion The performance metrics show a significant vari-
ance in terms of both cost and efficiency. Models like Meta-
Llama-3-8B and Google-Flan-T5-Base offer free usage but
are limited by smaller context windows, and lack of APWe
availability may hinder their scalability in a production en-
vironment. On the other hand, Gemini-Pro provides a large
context window and quick response time but at a higher cost,
making it less cost-effective for extensive querying. Models
like GPT-3.5-Turbo-0125 and Cohere-Command-r offer a bal-
anced approach with reasonable cost and performance metrics,
making them suitable candidates for integration into our RAG
system, especially considering their large context windows and
APWe availability, which are crucial for handling complex
academic queries.

Our RAG system is designed with a two-step retrieval
process. The first layer involves a vector search on abstracts,
which takes approximately 0.033 seconds per query. Following
the initial filtering, the second layer of our RAG system con-
ducts a more detailed search through the selected documents.

This second layer of search is executed in just 0.191 seconds.
Together, these two layers ensure that our system not only
quickly identifies relevant documents but also extracts the most
pertinent information from those documents, making it highly
scalable for handling numerous queries in an academic setting.

The performance of the two-step retrieval process in our
RAG system is significantly influenced by the characteristics
of the selected language models (LLMs). For instance, the
large context window of Cohere-Command-r enables more
comprehensive initial searches in the first layer, which reduces
the load on the second layer of detailed search. This not only
improves the efficiency of the system but also ensures that
the most relevant documents are prioritized early on. Also,
the availability of APIs for models like GPT-3.5-Turbo-0125
facilitates seamless integration into the system, enhancing the
automation of the retrieval process. This APWe connectivity
allows for dynamic updates and handling of complex queries,
which is crucial for academic research environments.

VIII. CONCLUSION

In conclusion, the development and evaluation of our
Retrieval-Augmented Generation (RAG) system demonstrates
its potential to revolutionize the retrieval and analysis of
academic papers. By effectively integrating advanced large
language models with our innovative two-layer retrieval tech-
nique, our system addresses the complexities of academic
search with high efficiency and accuracy. Our suggested two-
layer vector search system ensures that RAG not only identi-
fies relevant documents correctly but also processes them to
extract the most relevant information. This capability makes
it particularly valuable in academic settings where speed
and precision are crucial. Looking forward, the continuous
refinement of our system’s components, including the inte-
gration of more sophisticated LLMs and the optimization of
retrieval algorithms, will further enhance its performance and
scalability. This project lays a solid foundation for future
advancements in academic information retrieval, promising to
support researchers by providing quicker, more accurate access
to academic literature.

REFERENCES

[11 Y. X. Yunfan Gao, “Retrieval-augmented generation for large language
models: A survey,” https://arxiv.org/abs/2312.10997v5, 2023.

[2] E. P. Patrick Lewis, “Retrieval-augmented generation for knowledge-
intensive nlp tasks,” https://arxiv.org/abs/2005.11401, 2020.

[3]1 J. G. Hang Yang, “A method for parsing and vectorization
of semi-structured data used in retrieval augmented generation,”
https://arxiv.org/abs/2405.03989, 2024.

[4] “arxiv dataset,” https://www.kaggle.com/datasets/Cornell-
University/arxiv, accessed: 2024-05-07.

[5] “sentence-transformers/multi-qa-minilm-16-cos-v1,”
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-
cos-vl.

[6] “Hierarchical navigable small
https://www.pinecone.io/learn/series/faiss/hnswy/.

worlds (hnsw),”

[7]1 “Openai gpt-3.5 turbo model,” https://platform.openai.com/docs/models/gpt-

3-5-turbo, accessed: 2024-05-07.

[8] “Google gemini api documentation,” https://ai.google.dev/gemini-
api/docs/get-started/python, accessed: 2024-05-07.

[9] “Meta llama 3-8b model on hugging face,” https://huggingface.co/meta-
llama/Meta-Llama-3-8B, accessed: 2024-05-07.

[10] “Cohere command-r documentation,”
https://docs.cohere.com/docs/command-r, accessed: 2024-05-07.

[11] “Google flan-t5 base model on hugging face,”
https://huggingface.co/google/flan-t5-base, accessed: 2024-05-07.

