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Abstract—In recent years, automatic speech
recognition (ASR) systems have significantly im-
proved, especially in languages with a vast amount
of transcribed speech data. However, ASR sys-
tems tend to perform poorly for low-resource
languages with fewer resources, such as minority
and regional languages. This study introduces a
novel pipeline designed to generate ASR training
datasets from audiobooks, which typically feature
a single transcript associated with hours-long au-
dios. The common structure of these audiobooks
poses a unique challenge due to the extensive
length of audio segments, whereas optimal ASR
training requires segments ranging from 4 to 15
seconds. To address this, we propose a method
for effectively aligning audio with its correspond-
ing text and segmenting it into lengths suitable
for ASR training. Our approach simplifies data
preparation for ASR systems in low-resource lan-
guages and demonstrates its application through
a case study involving the Armenian language.
Our method, which is ”portable” to many low-
resource languages, not only mitigates the issue of
data scarcity but also enhances the performance
of ASR models for underrepresented languages.

Keywords—ASR, low-resource languages,
dataset creation, alignment.

I. Introduction

Automatic Speech Recognition (ASR) is a tech-
nological innovation designed to transform spoken
language into written text. The core functionality
of ASR systems involves capturing verbal input and
converting it into accurate textual representations,
primarily measured by the Word Error Rate (WER)
[1]. This capability is crucial for facilitating effec-
tive communication across both human-to-human
and human-to-machine interfaces. It has been inte-
grated into a multitude of applications, enhancing
accessibility and automation across various domains.
These applications range from air traffic control and
biometric security to more consumer-oriented uses

such as closed captioning for digital media, voice
message transcription, and smart home automation
systems. The implementation of ASR technology has
evolved significantly, becoming more sophisticated as
its applications widen [2].

ASR technology has achieved remarkable advance-
ments in high-resource languages such as English due
to the abundance of available data. These systems
benefit immensely from extensive databases of paired
audio-text samples, allowing for more refined training
and accuracy. In contrast, the performance of ASR
systems in low-resource languages—often minority,
regional, or dialectical—lags significantly. The pri-
mary challenge lies in the scarcity of annotated
speech datasets. Without substantial data, training
effective ASR systems for these languages becomes
exceedingly difficult. Traditional strategies to miti-
gate these data limitations include leveraging high-
resource languages for transfer learning, employing
unsupervised pre-training techniques with unpaired
data, and utilizing synthetic data augmentation to
enhance model robustness and prevent overfitting [3].
However, despite its potential, transferring knowl-
edge to low-resource languages is computationally
demanding and prone to catastrophic forgetting [4].

Given these challenges and the limited effective-
ness of current methods in improving ASR for low-
resource languages, this study proposes a novel
pipeline designed to create audio book datasets.
This method leverages the typical structure of au-
dio books—a single transcript associated with long-
duration audios (per chapter for example)—to pro-
duce dataset suitable for training robust ASR sys-
tems. By focusing on the available open-source data
in the low-resource Armenian language, we propose
a data processing pipeline, obtain a baseline model,
and use it to align audio books and retrain on



an extended dataset. We also discuss the training
and alignment limitations and propose solutions that
can be extended for many scenarios, such as low
training or data resources available, thereby support-
ing broader efforts to enhance ASR capabilities for
underrepresented languages globally.

II. Data Overview

A. General ASR supervised data schema
ASR datasets typically consists of a collection of

audio files paired with their corresponding normal-
ized1 transcriptions. The audio samples are short
(between 3 to 15 seconds) enough to capture acoustic
information and recognize distinct speech sounds
without loosing the context while meeting compu-
tational demands for training. These audio files are
typically segmented into complete phrases or sen-
tences, ensuring coherent speech units for effective
ASR training. Unfortunately, training high-quality
ASR models require extensive data, often hundreds
of hours, to cover various speech nuances and to
perform reliably across different speaking styles and
environments.

Fig. 1: MCV durations

1Standardise text units such as: numbers, abbre-
viations, URLs, etc. - https://github.com/NVIDIA/
NeMo-text-processing)

B. Mozilla Common Voice (MCV)
MCV [6] offers a multi-language dataset for ASR

development, including underrepresented languages
like Armenian. It is curated through crowd-sourcing,
allowing for a diverse representation of accents and
dialects (see Table I). As of version 17.0*, it comprises
over 23 hours of validated audio samples from
numerous speakers. MCV datasets are also good as
audios typically consists of one full normalized*
sentence, vital for ASR training (see Fig ??). It also
comes with default TRAIN, DEV and TEST sets
along with annotation of validated audio recordings.
Thus, this dataset, with its open licensing, serves as
an essential resource for training and bench-marking
ASR models.

C. Audiobooks

Grqaser [7], akin to projects such as Gutenberg
for English, provides a set of Armenian audio-books,
analogous to collections available in various other
low-resource languages. However, the data configu-
ration presented by these resources diverges from
the desired format (see Fig 2) for ASR training
as outlined in Section II-A.

Fig. 2: Grqaser durations (8 audio books)

Take, for example, the book ”FOR THE SAKE
OF HONOR”, which has single transcript alongside

Path Sentence Up Votes Age Gender Accent Duration(s)
common_voice_hy-AM_39459841.mp3 Մետաղական քրոմն... 2 twenties female eastern 7.56
common_voice_hy-AM_39459843.mp3 Դա այն տեղանքի... 4 thirties male eastern 5.940
common_voice_hy-AM_39459845.mp3 Մարոկկոյի քսան... 4 thirties female no accent 9.216
common_voice_hy-AM_39459850.mp3 Նրանք փրկվել են... 4 twenties female eastern 3.708
common_voice_hy-AM_39459896.mp3 Իրականում չկա... 4 thirties male Native 5.220

TABLE I: Sample Data Entries from the Mozilla Common Voice Armenian Dataset.
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37 audio segments, each ranging from a few minutes
to 20minutes, cumulatively spanning 3.7 hours (see
Fig 3).

Fig. 3: Durations of ”FOR THE SAKE OF HONOR”
audios - https://grqaser.org/am/713/?c=22

Utilization of such dataset necessitates a text nor-
malization, then a 2 phase process: alignment and
segmentation. Firstly, aligning the multiple audios to
the monolithic transcript—potentially via manual
inspection*. Then, cutting the audios into shorter,
model-digestible segments—potentially via NFA2.
This segmentation, a non-trivial task plagued by the
need for having complete utterances in the short
audio cuts, poses a significant challenge in data
preparation for ASR model training.

Manual Inspection: We have a single transcript
containing the text of sequential records of audios
(e.g. single audio per chapter of the book). So per
book processing is - begin with the first audio, lis-
tening until the end and using a text search function
(CTRL+F) to find the corresponding ending words
in the transcript. Align this text segment with the
audio. Repeat this process consistently for each sub-
sequent file, making sure the start of each new seg-
ment aligns with the end of the previous. A medium
level intensive task repeated for all the audios (37 our
example: ”FOR THE SAKE OF HONOR”).

III. Data Processing

During our study, the primary source in terms
of quality and size was MCV, specifically Common
Voice Corpus 16.1 (January 5, 2024). In contrast to
current v17 release, it was almost half of its size -
consisting a total of 24 hours of audio. Thus, the
majority of our data processing and trainings we
conducted on this smaller dataset to obtain a POC

2Aligns audio timestamps with corresponding texts -
https://github.com/NVIDIA/NeMo/tree/main/tools/nemo_
forced_aligner

- intended to be used on the v17 release (see Model
Training for more details on this approach). So, this
v16 corpus is divided into the following data splits
(not mutually exclusive):

Validated Data Hours
Train 5.16
Dev 3.83
Test 4.31

Data Category Hours
Other 8.94
Validated 13.39
Invalidated 1.28

TABLE II: Distribution of Data in Mozilla Common
Voice Corpus 16.1

Given the scarcity of data, we made the decision to
disregard the ”validated” status and combined the
TRAIN and DEV sets with the OTHER category,
filtering out any repetitions. This strategy resulted
in a consolidated training corpus of approximately
18 hours. Since we merged the DEV set into the
training data, we used the 6-hour-long test set for
validation in our experiments. While unconventional,
this approach can be justified for conducting nu-
merous short experiments aimed at hyper-parameter
optimization, as discussed in the next chapter.
The next step is to preprocess the corpus,

both the texts and audios. The preprocessing
pipeline, along with its corresponding configurations,
can be accessed at https://github.com/NVIDIA/
NeMo-speech-data-processor. The common steps
performed by this pipeline can be categorized into
two sections:

A. Data Cleaning
• Normalize Texts: While the MCV data is

already normalized, for others this might not be
the case

• Resampling Audios: A sampling rate of 16
kHz is generally sufficient for Automatic Speech
Recognition (ASR) purposes

• Language-Specific Grammatical Rules:
Enforce regex to map punctuation, combine
variations of dashes, handle direct/indirect
speech punctuation, and perform character
transformations (e.g. ”ó” to ”o”).

• Removing Extra Symbols: Certain symbols
such as "<<", ">>", "(", and ")" may not
contribute meaningfully to ASR and can be
removed.

• Dropping Non-Alphabetic Sentences: Con-
taining characters outside the alphabet (e.g.
English letters, or UTF artifacts) are dropped
to maintain linguistic relevance.

• Dropping Corrupted Audios: Audios that
are corrupted or of poor quality (e.g. extremely
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low Zero-Passing rate or audios containing many
silences) are removed from the dataset

B. Data Preparation
• Training a Tokenizer: A tokenizer specific to

the given language is trained. For instance, a
SentencePiece Unigram tokenizer (spe unigram)
is used for our study.

• Creating a NeMo-Format Manifest File:
This file typically includes fields such as au-
dio_filepath, text, duration ..., providing
essential metadata for training.

• Tarring Audios into Sharded Buckets: Au-
dios are packaged into sharded buckets based
on their durations. This method, prefered by
webdataset, enhances batching strategy and
facilitates faster training.

IV. Model Training

After applying these preprocessing steps to the
MCV v16 dataset, we proceeded to fine-tuning
stt_en_conformer_ctc_large conformer check-
point, to obtain a baseline model (see Ablation IX-B).
For this purpose, we utilized the Encoder-Decoder
based Connectionist Temporal Classification (CTC)
Byte-Pair-Encoding (BPE) model. This model was
chosen due to its effectiveness in handling sequence-
to-sequence tasks like ASR. Specifically, the CTC
loss employed indirectly results model to handle
variable-length output sequences and is robust to
alignment errors. Moreover, as Conformer-CTC ar-
chitecture (Fig 4) combines the strengths of self-
attention and convolutional modules, it can effec-
tively capture both global interactions and local cor-
relations within the input data. In addition, the use of
CTC loss and decoding makes it a non-autoregressive
model, simplifying the training process and enabling
efficient inference.

Training on the 18-hour-long corpus typically re-
quired around 2 days to achieve aWER close to 0.3.
In our training approach, we adopted a strategy of
conducting multiple short training experiments (up
to 70 epochs) to explore various hyper-parameter
configurations. The goal was to identify an optimal
set of hyper-parameters that could then be applied
to larger datasets (we were expecting the v17 release
after organising its collection) for a prolonged dura-
tion of training to establish a solid baseline.

Ultimately, the insights gained from these short
training experiments (see ablation study for more
details) helped us to train a baseline model on the

Fig. 4: Conformer CTC model architecture

extended 38hours longs MCV v17 dataset reaching
0.19 WER without and 0.15 WER with post-
processing3 on 6.75 hours long test set. As anything
below 0.2 WER is commonly accepted as good
ASR model, we could now use the obtained baseline
for aligning the previously mentioned Audio Books
dataset.

V. Aligning the Audio Books
Manual Inspection left us with 8 audio books,

each containing multiple <text, audio> pairs, instead
of <single transcript, multiple audios> pairs. How-
ever, the problem of having long audios still persists.
To divide 30minute long audios into many 7-8 second
long audio chunk with corresponding texts, we used
our baseline (obtained in IV) to get the alignments.
We propose two strategies depending on the available
resources and the duration of audios.

A. Neural Approach
The NeMo Forced Aligner (NFA) matches

text with spoken audio by leveraging token-level,
word-level, and segment-level alignments. The com-
mon pipeline (Fig 5) uses a pretrained CTC model
(Conformer in our case) to generate probabilistic
outputs (logits) to perform soft alignment on the
CTC side.

3No LLM used, just replacing all the occurrences of
"եւ" with "և"
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Fig. 5: NeMo-Forced-Aligner using a baseline model

As this paper aims to advance ASR for low-
resource languages through dataset creation, we ac-
knowledge the existence of rare cases where neither
an available ASR model nor an MCV dataset is
present, thus we suggest using tools like MFA4 can
be used.
After running NFA over the audio books corpus,

we get segment, token and word level alignments -
.ctm file (see example in Table III).

Utterance Start (s) Duration(s) Text
001 0.04 2.12 Ալեքսանդր
001 2.20 0.76 Շիրվանզադե
001 3.64 0.44 Պատվի
001 4.08 0.36 Համար
001 5.08 0.52 դրամա
001 5.76 0.36 չորս
001 6.20 0.80 գործողությամբ

TABLE III: Example of Word Level CTM Output

The word-level alignments, while accurate, are too
brief — we aim for audio segments ranging from 4 to
15 seconds, targetting 8 seconds. To achieve this, we
propose a grammar and duration-based segmentation
algorithm to create longer chunks from these word-
level alignments. We refer to this method as our
Segmentation Pipeline (SP):
1) Sentence Boundary Detection: We merge

short word segments until they reach sentence-
ending punctuation marks (e.g., ‘.‘ or ‘:‘ in
Armenian). This step is crucial for identifying
complete utterance units, which are typically
comprised of a single, full sentence.

4Montreal Forced Aligner uses pre-trained acoustic models
and phonetic dictionaries to align phonetic and word-level
transcripts with audio recordings

2) Error Mitigation in Segment Merging:
During the merging process, we address ASR
errors that often lead to inaccurate end-time
predictions of audio segments during the NFA.
We use a simple Voice Activity Detection
(VAD), with an empirical threshold of -20dB
tailored to our dataset, to identify abrupt
endings or segments that terminate mid-word.
Upon detection, the segment’s end frame is
adjusted to the closest point of silence or in-
activity before proceeding with the merge.

3) Splitting Long Segments: Due to com-
plex punctuation in audio-books, our segments
sometimes extend up to 30 seconds. Therefore,
we split them at Auxiliary Punctuation
(AP), such as commas. However, when faced
with sentences that contain multiple APs, we
greedily5 determine the most effective splits, by
prioritizing the duration of silences around the
APs while also minimizing the number of splits
needed to obtain less than 15second chunks.
The objective is twofold: to ensure getting
complete voice utterance and to reduce the
frequency of cuts, thereby maintaining the
natural flow of speech.

4) Segment Consolidation: Short segments
that are contextually complete sentences, such
as ’Բարև Ձեզ’ (’Hello.’), are merged with
subsequent segments provided this does not
breach the maximum segment duration con-
straint of 15seconds.

5) Silence Trimming: Excessive silences result-

5Our proposed greedy algorithm - https://drive.google.
com/file/d/14ZmogKFDX8P0Zc_kQ_9S2B36WgkWLnq1/
view?usp=drive_link
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ing from merging small chunks are trimmed to
maintain the natural flow of speech.

6) Concat Smoothing: To ensure seamless tran-
sitions between segments and mitigate percep-
tible volume shifts, we apply modified Hanning
Window at the junctions of merged segments.

7) ASR Filtering: We run our baseline model
over the chunks, filtering out predictions with
a WER above 0.75 to avoid potential error
propagation and artifacts from NFA.

Finally, we obtain a new dataset with over 20hours
of data (Fig 6). Despite having longer (close to
15seconds) audios in our new dataset compared to
that of the MCV, data is still very valuable for ASR.

Fig. 6: Post NFA Audio Book (chunked) v0

The multi-step SP can be implemented in a more
straightforward way - placing a special splitter token
”|” after each End of Sentence punctuation in the
raw transcripts. This will direct the NFA on its
segment-level alignment (see IV). This is analogues
to our SP’s step 1) but with possibility of obtaining
too long segments, which our SP cuts down at various
levels.

B. Hybrid Approach - VAD-ASR-CER (VAC)
Section V-A identifies NFA as the best practice

for the Alignment task. However, its effectiveness
comes with certain limitations. Firstly, the success of
NFA significantly depends on the quality of the ASR
baseline, which requires a substantial amount of data
to achieve a close to 0.2 WER. Secondly, using NFA

Start(s) Duration (s) Text Segment
177.08 1.24 Երիտասարդ:

178.40 1.76 Խոսում<space>է
<space>Շամախու
<space>բարբառով:

181.12 2.96 ԶԱՐՈՒՀԻ<space>–
<space>Երիտասարդ
<space>աղախին:

TABLE IV: Example of Segment Level CTM
Output

on audio longer than 30 minutes, even with high-
capacity V100 GPUs (24Gb), greatly increases the
likelihood of encountering memory allocation errors
(see GitHub issue). Given these challenges, we pro-
pose a novel method for aligning audio of arbitrary
length, thus handling extensive multi-hour audios.
Therefore, even Google Colab’s free T4 GPUs are
enough to run it. The pipeline consists of three main
components:
1) Voice Activity Detection We split original

audios based on the silences in the audios. This
can results in having hundreds of up to 2second
long chunks per 20-minute audio.

2) ASR inference Run baseline model over this
chunks to obtain the corresponding texts.

3) Character Error Rate (CER) matching:
Our complex algorithm iterates over the origi-
nal transcript with a dynamic window, match-
ing the source text with the predicted chunks’
texts, while minimizing the CER.

Note that our proposed VAD-ASR-CER* ap-
proach is independent of the duration of the audio.
Furthermore, it can even work with poor ASR model
predictions as well. The table .. shows

Source Text Chunk Text CER Start End
Գոլլում… Իսկ Որ ո ի ում սկ։ 0.66 22918 22931
միստր Բեգինս։ Մի ս Է բԲեկինձ։ 0.41 23072 23086

Իսկ ո՞ւր է Տորինը Ի՛սկ ՞ր է տօրինը։ 0.43 23272 23290

TABLE V: The VAD-ASR-CER* found matches
(source text) for ”The hobbit, or there and back
again”

The second column displays ASR-predicted text,
obtained after step 1) - VAD. The algorithm suc-
cessfully identifies the best match, displayed in the
”Source Text” column, corresponding to segments
from the original transcript, in this case, from the
book ”The Hobbit and Back Again.” The ”Start” and
”End” columns indicate the indices of these matched
text segments in the originalraw transcript.
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These results of VAD-ASR-CER* can again be
passed through our Segmentation Pipeline to
obtain a final-grained dataset. Comparing to Section
V-A VAC presents several advantages, particularly
in the context of resource limitations. Primarily, it
circumvents the need for extensive GPU resources
required by NFAs during the alignment phase of
lengthy audio files. Additionally, it alleviates the
requirement for high-quality ASR models, which are
often unfeasible in low-resource language scenarios
due to data scarcity.
Despite these benefits, VAC relies heavily on the

accuracy of the label transcript. Our algorithm op-
erates by iteratively scanning the original, long-form
transcript in sync with the post-VAD audio chunks.
We dynamically adjusts the size and position of
the text window to find the best match for each
chunk’s ASR-predicted labels, and continue this pro-
cess throughout the transcript. However, this sequen-
tial and iterative method faces significant challenges
if the transcript contains missing or extraneous text
that could span a couple of sentences. For instance,
introductory remarks at the beginning (sometimes
at the end) of recordings, which often include date,
chapter information, or other preliminary details not
present in the transcript, can disrupt the matching
process which could carry on throughout the whole
transcript, resulting in wrong alignments. Conse-
quently, the algorithm’s performance deteriorates
when encountering incomplete <audio, text> pairs.
On the other side this is not a trouble maker as it is
an expected outcome for having sub-optimal data.
To conclude the VAC, we had to perform some

benchmarks on the algorithm. Initially, manual
checks were essential, as predictions were occasion-
ally nonsensical. Reviewing the matched text re-
quired examining a more extended context from the
source text and sometimes listening to the corre-
sponding audio. On average, the accuracy of the
matches was 90.3% across 20 runs for each book. It
is important to note that a ’false match’ typically
involves minor discrepancies, such as a missed or an
additional word compared to the original transcript,
which is a less critical error for the ASR than, for
example, mislabeling an image of a dog as a table for
the image classification task.
While these semi-quantitative measures yield valu-

able insights, a fully quantitative approach is essen-
tial to comprehensively evaluate the performance of
our VAC pipeline. To this end, we devised a test
scenario that closely mimics the audiobook data for-
mat. Specifically, we consolidated all texts from the
MCV v17 test set into a single, extensive transcript to

replicate the structure of an audiobook. We then ran
our baseline model across all test audios and applied
our CER-based matching algorithm to align
the ASR predictions with this unified transcript,
effectively identifying the correct source texts. The
results are very promising, demonstrated in Table VI:

Method %Exact Matches Mean WER Mean CER
ASR only 71% 19% 3%

VAC 97% 0.5% 0.34%

TABLE VI: The quantitative benchmark for VAC
on Merged MCV v17 Test Corpus

VI. Retraining (Mixed dataset)
So far we did the following two important things:
1) Baseline Model: We conducted numerous

training experiments on the fully-processed
Mozilla Common Voice (MCV) v16 dataset
to fine-tune hyper-parameters. We then trans-
ferred the refined model parameters for training
on MCV v17 extended dataset. The outcome
was a robust baseline model with a promising
WER of 0.19, setting a strong foundation for
subsequent enhancements.

2) Processing and Enhancing Audio Books
Data: Initially unsuitable for training pur-
poses, raw Audio Books data underwent a
meticulous processing phase where we eventu-
ally aligned and then re-segmented the audio
segments using our proposed algorithms. This
effort resulted in a training set of slightly over
20 and a test set of over 1 hour, which can
be easily extended having all the tool sets
developed.

Building on these achievements, we are now poised
to integrate the two distinct sources of data—totaling
nearly 60 hours (after our Data Processing Pipeline -
54hours)—to retrain our model. This phase presents
unique challenges, as the datasets differ significantly
in structure and quality. To ensure a successful merge
and to avoid potential pitfalls during training, we
have implemented several critical processing tech-
niques, described below:
1) Distributional Differences:

a) Problem: The Zero-Crossing Ratio and
Root Mean Square Energy levels in the
audio books are significantly lower than
those observed in the Mozilla Common
Voice (MCV) dataset. This discrepancy
arises primarily due to extended silences
within the audiobook recordings, occur-
ring because of shifts between direct and
indirect speech.
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b) Solution: Reusing our VAD algorithm to
cut these silences.

Fig. 7: Effect of Silences

2) Speaking Style Differences:
a) Problem: MCV is a multi-speaker

dataset, where each audio contains a sin-
gle speaker, whereas audiobooks typically
feature a single speaker per book. How-
ever, notable shifts in prosody and into-
nation occur within single audio chunks as
the narrator attempts to mimic the voices
of various characters during dialogues.

b) Solution: Filter out audio segments that
contain excessive use of Armenian punc-
tuation marks "՜" or "՞", which are clear
indicators of overly enthusiastic and ex-
pressive speech. This helps maintain a
level of neutrality within the data.

3) Volume Discrepancies Between Datasets:
a) Problem: A significant challenge we

faced was the difference in volume levels
between the MCV and the audio books.
None of our initial training experiments
with the mixed datasets yielded any no-
table results because of this huge gap.

b) Solution: We applied a dynamic vol-
ume normalization across all audio files.
This crucial step was imperative to ensure
consistency in audio input levels, which
helped to advance the training, underscor-

ing the essential role of this process in the
success of our model development.

VII. Final Evaluation
The evaluation of our baseline and mixed training

models offers intriguing insights into the effectiveness
of different training data configurations for ASR
systems. Initially, the baseline model, which was
trained solely on 38 hours of the MCV v17 dataset,
achieved aWord Error Rate (WER) of 0.19. However,
when the model was trained on a mixed dataset
comprising MCV v17 and an additional 20 hours
from audiobooks, and tested on the same MCV test
set (6.5 hours), the WER slightly increased to 0.21.
This initial result suggested that the mixed training
might be less effective on MCV-exclusive test data.
To further investigate, we evaluated both models

on a test set composed solely of audiobook audios.
The results were significantly better for the mixed
model, which yielded aWER of 0.16, compared to the
baseline’s 0.39 WER. This substantial improvement
highlights the mixed model’s ability to generalize
and capture underlying patterns in the Armenian
language more effectively than the MCV-trained
model. The nature of the MCV data, which consists
of individually recorded sentences, differs markedly
from the continuous, natural speech flow found in
audiobooks. This continuous flow likely presents a
more realistic scenario that an ASR system would
encounter in production environments, suggesting
why the mixed training model performed better on
audiobook data.

Training Data Test Set WER
MCV v17 only (38
hours)

MCV (6.5 hours) 0.19

MCV + Audiobooks
(54 hours)

MCV (6.5 hours) 0.21

MCV v17 only (38
hours)

Audiobooks (1 hour) 0.39

MCV + Audiobooks
(54 hours)

Audiobooks (1 hour) 0.16

TABLE VII: Comparison of WER across different
training and test configurations

These results underscore the potential benefits of
diversifying training data and adapting models to
handle more natural speech patterns. Additionally,
given the lengthy duration of each experiment due to
the size of the extended training data, future efforts
might focus on utilizing more extensive computa-
tional resources. Increasing the batch size and ad-
justing the learning rate warm-up steps, as discussed
in our ablation study, could potentially enhance
performance on the MCV test set as well.
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VIII. Future Work & Conclusions

Throughout this study, we have developed a novel
pipeline to enhance ASR capabilities and demon-
strated it on Armenian, a representative of low-
resource languages. By leveraging audiobooks, we
created rich, contextually varied ASR datasets, ad-
dressing significant gaps such as the scarcity of
annotated speech data. Our approach introduces
innovative algorithms like the Segmentation Pipeline
for reassembling chunked audios and the VAC
(Voice Activity Detection-ASR-Character Er-
ror Rate) matching system for aligning long audio
files. These methodologies not only mitigate the
data scarcity and resource constraints but are also
scalable, making them applicable to other under-
represented languages with accessible audiobooks. In
addition, the data processing intuitions—considering
the style and tone of audiobooks, the structural
specifics of speech—and techniques like volume nor-
malization and silence removal which were crucial in
refining the training processes, are also applicable to
audio books in other languages, as the core intuitions
are shared. Furthermore, our hyperparameter opti-
mization strategies to overcome initial bottlenecks in
transfer learning (see IX) underscore the adaptability
of our methods. Therefore, each component of our
pipeline, from data processing to alignment and
segmentation, from VAC to training, is designed to
be portable and flexible across different languages,
demonstrating our commitment to advancing ASR
technology globally.
Looking forward, the potential to expand this work

to other low-resource languages is vast. Specifically,
the VAC pipeline can be leveraged to automate
the transformation of audiobooks into training-ready
data by replacing the Manual Inspection process
(desc. in II-C). By merging all long audios into a
single track and then applying the VAC, we can fully
automate the data preparation process, from raw
audio book data to chunked and segmented outputs
suitable for model training. Future enhancements
could also focus on refining the algorithm to bet-
ter handle diverse dialects and accents, which pose
significant challenges in low-resource settings. By
improving the robustness of the VAC, our pipeline
could achieve more accurate alignments, effectively
handling segments where introductions or other text
parts might be missing from the transcript. This ca-
pability is crucial given the frequent poor annotations
in audiobook datasets, where long passages may lack
precise textual correspondence, as highlighted in our
methodology for processing audiobooks. The next big
step would be experimenting on mixed datasets with

various configurations, trying to obtain close to 0.1
WER on MCV dataset, fully beating the baseline.
Simultaneously, we aim to maintain and enhance
model generalization capabilities by evaluating per-
formance on new test cases derived from audiobooks
using our proposed pipeline.

References
1) H. Kheddar, M. Hemis, and Y.

Himeur, ”Automatic Speech Recognition
using Advanced Deep Learning
Approaches: A survey,” arXiv preprint
arXiv:2403.01255v2, 2024. [Online]. Available:
https://arxiv.org/abs/2403.01255v2.

2) P. Arisaputra, A. T. Handoyo, and A. Zahra,
”XLS-R Deep Learning Model for Multilingual
ASR on Low- Resource Languages: Indonesian,
Javanese, and Sundanese,” 2024.

3) H. Wang, Z. Jin, M. Geng, S. Hu,
G. Li, T. Wang, H. Xu, and X. Liu,
”Enhancing Pre-trained ASR System Fine-
Tuning for Dysarthric Speech Recognition
Using Adversarial Data Augmentation,”
arXiv preprint arXiv:2401.00662v1,
Jan. 2024. [Online]. Available:
https://arxiv.org/abs/2401.00662v1.

4) Ian J. Goodfellow, Mehdi Mirza, Da Xiao,
Aaron Courville, and Yoshua Bengio, ”An Em-
pirical Investigation of Catastrophic Forgetting
in GradientBased Neural Networks,” 2013.

5) E. Rastorgueva, V. Lavrukhin, and
B. Ginsburg, “NeMo Forced Aligner
and its Application to Word Alignment
for Subtitle Generation,” in Proc.
INTERSPEECH, 2023. [Online]. Available:
https://www.isca-archive.org/interspeech_
2023/rastorgueva23_interspeech.pdf

6) Mozilla Foundation, ”Common Voice
Corpus 17.0,” Mozilla Common Voice,
Mar. 20, 2024. [Online]. Available:
https://commonvoice.mozilla.org.
[Accessed: 07.01.2024].

7) Grqaser, ”Armenian Audiobooks,”
Grqaser.org, 2023. [Online]. Available:
https://grqaser.org. [Accessed: 20.12.2023].

9

https://www.isca-archive.org/interspeech_2023/rastorgueva23_interspeech.pdf
https://www.isca-archive.org/interspeech_2023/rastorgueva23_interspeech.pdf


IX. Ablation Study

A. Introduction
This chapter details an ablation study aimed at op-

timizing the EncDecModelBPE for Armenian speech
recognition. We investigated several key hyperparam-
eters, including batch size, learning rate schedulers,
warm-up steps, and weight decay, to understand their
effects on model performance. Our study leverages
the MCV v16 and extends to version 17.
Glossary:

1) Learning Rate (LR) Scheduler: Defines
how learning rate changes throughout the
training

2) Warm-up Steps: Number of initial steps the
learning rate increases to a predefined value

3) Weight Decay: Regularization technique to
prevent overfitting by penalizing large weights

B. Importance of those hyper-parameters
The pretrained conformer checkpoint6, initially

trained on a vast English corpus, is equipped with
its own vocabulary and linguistic characteristics tai-
lored to English. When we attempt to fine-tune this
model for another language, we encounter signifi-
cant bottleneck. This mismatch becomes apparent
within just a few training steps, where the predictions
initially comprising chaotic characters from our new
tokenizer swiftly degenerate into sequences of empty
strings. These issues persist unless we undertake
specific optimizations of the hyper-parameters.

Fig. 8: The stucked training due to language transfer
bottleneck. For reference, at least 20 validation loss
is necessary to obtain a good model

6stt_en_conformer_ctc_large - https://catalog.
ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_
conformer_ctc_large

A higher initial learning rate, facilitated by an
appropriate scheduler (empirically - the best Noa-
mAnnealing), provides the necessary momentum to
overcome potential local minima early in training.
This was visible both in the stucked validation
plots (displayed in Fig 8), and validation logs, where
we had predictions of whole utterances, consisting
of only 1-2 characters, repeated over each other,
when the scheduler strategy was for instance Cosine
Annealing, which was lowering the learning rate
too rapidly (Fig 11), preventing the model from
effectively exploring the solution space.

Fig. 9: Steeper Loss decrease when having higher
learning rate and weight decay

Coming back to a higher initial learning rate, it
proved beneficial for the model to quickly navigate
the loss landscape, thereby avoiding potential shallow
local minima that can derail the training process.
This is supported by the observations in Fig 9, where
models with higher learning rate have a significantly
steeper decrease in loss, avoiding the prolonged hor-
izontal asymptotes7 that indicate stalled learning
(around 1 WER lines in Fig 9). Though need to be
cautious, as setting learning rate two high can cause
both underfitting and overfitting (Fig 10).
Exploring the learning rate further, it is worh

having a look at what actually this scheduling is
visually.

7If looking at the training over 100k+ steps, can see ”imag-
inable” horizontal asymtotes around which the Validation
WER oscillates without any progress. This empiric observa-
tion helped to cut many non promising experiments
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Fig. 11: The learning rate through training steps. The
most aggressive (pink) is the same overfit training
from Fig 10. The deviated in shape is the CosineAn-
nealing - quickly vanishing IX-B

C. Experimental Results
Training configurations used over MCV v16 show

us some patterns. The table below summarizes some
configurations with their corresponding WERs, illus-
trating their influence on overall performance:

Warm-Up
Steps

Learning
Rate

Weight
Decay

Test
WER

10000 0.2 0.001 0.28
5000 0.4 0.4 0.25
3500 0.5 0.1 0.21
100 0.1 - 0.40

TABLE VIII: HParams on the MCV v16

These results underscore the effectiveness of a
tailored approach to learning rate scheduling and
hyperparameter tuning. Notably, the configuration
with 3500 warm-up steps and a learning rate of 0.5
achieved the best WER of 0.21. Re-using them we

managed to obtain 0.19 WER on the MCV v17
dataset. Moreover, the already discussed hard-code
replacement we eventually obtained a 0.15 WER
which can be considered as open source Armenian
SOTA model - None
During initial training trials, our model frequently

settled into a counterproductive pattern, often pre-
dicting only the colon (”:”) as its output. This
particular behavior was likely due to the colon’s
frequent presence at the end of sentences in the
training data, leading the model to find a simplis-
tic path to minimize loss. As a result, the model
would rapidly converge to a loss asymptote and
oscillate near this point, significantly hindering fur-
ther learning and delaying meaningful results. To
address this, we removing all the colons, from the
texts. This adjustment discouraged the model from
relying on punctuation prediction as a shortcut to
reduce loss. While at inference time, to maintain
the grammatical integrity of the generated text, we
reintroduced colons where appropriate, especially if
the sentence ended without any other punctuation
such as a question mark. This post-processing step
ensured that while the model was not biased towards
predicting colons during training, the final output
remained grammatically coherent.
Additionally, we implemented normalization tech-

niques such as converting special Armenian names to
lowercase (common pattern in audiobooks transcript,
when during each persona’s speehc author cites their
names), which streamlined the training data and re-
duced the complexity that the model had to navigate.
Such modifications were important as training on the
mixed dataset inherently takes a couple of days.

Fig. 10: The huge pink curve is an overfit (train decreases, val increases) with learning rate of 4, while
middle one that is asymptotic towards WER 0.3 - is with learning rate of 2
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