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Abstract—Customer retention is crucial for business success,
ensuring a steady revenue stream and fostering brand loyalty.
Modern companies invest significant resources in customer re-
tention efforts, including improved service, loyalty programs, and
personalized experiences. This paper presents a comprehensive
approach to enhancing customer loyalty through predictive
modeling and data pipelining for ”Global Credit” UCO CJSC,
focusing on their CashMe loan product. The project employs
survival analysis (the Accelerated Failure Time (AFT) technique)
to predict the likelihood of customers returning for another loan,
complemented by a data pipeline spanning database setup, mod-
eling, and an API for operational integration. Leveraging Docker
for containerization, PostgreSQL for database management, and
FastAPI for API development, the project streamlines workflow
and facilitates seamless interaction between systems.

Index Terms—loan company, retention, survival analysis,
pipeline

I. INTRODUCTION

Customer retention is an essential component for the sus-
tained success of any business. Beyond the initial sale, retain-
ing customers ensures a steady revenue stream and promotes
brand loyalty. Thus, most modern companies allocate a great
deal of time and resources to customer retention efforts. Some
common practices include improved customer service, loyalty
programs, and personalized experiences.

“Global Credit” UCO CJSC (Company) is one of the lead-
ing universal credit organizations in the Republic of Armenia,
offering its customers a wide range of loan services spanning
various sectors, including consumer, business, mortgage, and
agriculture. The Company stakeholders expressed an interest
in enhancing customer retention, specifically for one of their
consumer loan products - the CashMe loan. This online
loan option is available to individuals aged 21-65, offering
a maximum sum of 900,000 AMD with a repayment period
of up to 18 months.

This project entails the development of an end-to-end prod-
uct, beginning with the definition of the business problem and
culminating in the delivery of a software solution that will
help the Company make data-driven decisions and improve
its customer retention efforts. To elaborate, this project treats
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the business problem as a time-to-event modeling issue and
leverages the power of survival analysis to predict the like-
lihood of a specific customer returning to apply for another
loan in the Company. Additionally, in order to mirror real-
world business operations, the project entails the development
of a data pipeline. The pipeline starts off with the initiation of
a PostgreSQL database, extends to modeling, and culminates
in the creation of an API. The API is intended to make the
modeling results accessible to the customer service operators,
enabling them to identify potential returning customers, target
specific clients, and document the strategies used in their
retention efforts.

II. PROBLEM DEFINITION

As mentioned earlier, the first step of the project was
to define the business problem. It is important to note that
throughout the execution of the entire project, regular meetings
were held with the stakeholders of the Company in order
to be in line with their requirements, keep them updated on
progress, and get their expert opinion. Upon these discussions,
the business challenge was identified as stimulating CashMe
clients to promptly reactivate another CashMe loan following
the closure of their previous one. Thus, the problem this
project aims to solve was established to be estimating the
conditional probability of a customer returning to take
another CashMe loan, given that the client has closed
his/her latest loan. The Company can utilize this information
to prompt customers to apply for another CashMe loan shortly
after closing their previous one.

III. RESEARCH & METHODS
A. Data Collection

With the business problem clearly defined, the next natural
step was exploring the Company’s database. The Company
database is rather extensive, comprising vast amounts of
information sourced both internally and externally. In close
collaboration with field experts, we extracted a set of poten-
tially impactful features for this project, which mainly revolve
around customer characteristics and behavioral patterns. In the



end, a total of seven tables were extracted (Table 1). A detailed
description of the composition of each of the tables can be seen
in Appendix 1. It’s important to know that the extracted dataset
includes information on CashMe loans distributed throughout
the year 2021.

TABLE I
ORIGINAL DATASET

Table Name

marz

consumer_client
consumer_main
consumer_hc
consumer_family_relation
eceng_ces_data

Description

Information regions in Armenia.

Details about clients.

Information about loan applications.
Information related to disbursed loans.
Family members associated with clients.
Information about the clients’ legal
proceedings.

Information about the vehicles of the
client.

eceng_vehicle_info

B. Architecture

The project consists of 3 main parts:

o Database
e Modelling
o API

To streamline and standardize the workflow, the Docker
platform was utilized for this project. Docker is a containeriza-
tion platform that enables developers to package applications
and their dependencies into standardized units called contain-
ers. Containers are isolated and include everything required
for running the application, eliminating reliance on the host
system and ensuring seamless functionality [2]. This project
entailed the development of multiple containers; thus, the
Docker compose tool was utilized to define and run a multi-
container application. The PostgreSQL relational database
management system image [3] was chosen to store data, and
Admin for PostgreSQL Management image was used to man-
age the database [1]. For database setup and operation, Python
was used, employing key packages such as SQLAlchemy in
collaboration with PostgreSQL database adapter psycopg?2.

C. Modelling

The next important step of the project was choosing the
modeling technique that would be implemented. Given the
problem definition, survival analysis emerges as a fitting statis-
tical tool for estimation and prediction, offering a technique to
analyze the time until the occurrence of an event of interest, in
this case, the reactivation of a CashMe loan. Before discussing
this further, let’s define a few key terms:

o Survival Time: The time until the occurrence of the event
of interest. In our case, it’s the time between closing a
CashMe loan and reactivating the next.

o Survival Function: This function, typically denoted as
S(t), gives the probability that a subject survives beyond
time t. It represents the probability that the event of
interest (loan reactivation) has not occurred by time ¢.

o Hazard Function: The hazard function, denoted as h(t),
represents the instantaneous rate of occurrence of the

event of interest at time ¢, given that the subject has
survived up to time t. It provides insights into the risk
of experiencing the event at a particular time.

o Cumulative Hazard: The cumulative hazard function
H(t) provides information on the total accumulated risk
of experiencing the event of interest that has been gained
by progressing to time t.

There are three distinct groups of survival models:

« Nonparametric models, such as the Kaplan-Meier Esti-
mate, do not assume any parametric form for the survival
function or the hazard function.

o Parametric models, such as the Accelerated Failure
Time (AFT) Model, assume that survival time follows a
known distribution. The Weibull, the log-logistic, and the
log-normal distributions are commonly used for survival
time.

o Semi-parametric models, such as the Cox proportional
hazards model, do not require an assumption about the
shape of the hazard function; however, they make as-
sumptions about the effect of covariates on the hazard
function.

Initially, Kaplan-Meier was used to analyze the survival
curve and get insights into the overall survival distribution.
However, as it does not consider the effects of exploratory
variables, the choice for a main modeling technique was
between the semi-parametric and parametric models. In the
early stages of the project, it became apparent the proportional
hazards assumption required for the Cox proportional-hazards
model failed for most exploratory variables. This indicates that
the effects of most variables on the hazard rate varied over
time. Therefore, a strategic decision was made to implement
the modeling using the parametric Accelerated Failure Time
(AFT) model [5]. .

D. API

APIs, or Application Programming Interfaces, serve as in-
termediaries, allowing different software systems or platforms
to interact with each other. Among the various types of API
methods, the GET method is designed for retrieving data or
information from a specific resource such as a database. On
the other hand, the POST method is employed for submitting
data to a designated resource, often used when there’s a need
to create or update data on the server. These two types of
requests were integrated into the project [6]. FastAPI - famous
for its efficiency and ease of use, was chosen for the API
development process [4]. Data interactions were administered
through SQLAIchemy, ensuring smooth access and manipu-
lation within the PostgreSQL database. The API testing was
conducted using the ASGI server Uvicorn. This methodology
helped the develop of a robust, efficient, and user-friendly API
capable of seamlessly interacting with the database for retriev-
ing client information and creating outbound communication
creation.



IV. RESULTS

Employing the methods described above, a comprehensive

data pipeline was developed (Fig. 1) :

o PostgreSQL (db): This service sets up the PostgreSQL
database.

e Admin for PostgreSQL Management (pgadmin): This
service establishes the pgAdmin container, facilitating
PostgreSQL management.

« Database Setup (db_setup): This service executes
database setup tasks. It involves initializing the database
schema, populating initial data, and preparing data for
modeling.

o Model Container (model): This service builds the model
container, which generates survival predictions, populates
the database with the results, as well as hosts a Jupyter
notebook containing information on EDA and modeling
results.

o API Container (app): This service constructs the API
container, specifying a command to start the FastAPI
application.
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Fig. 1. Flow of Docker Containers
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Let’s discuss the functionalities of the flow in more detail:

A. Database Setup

The flow starts with setting up a PostgreSQL database,
which can be administered through pgadmin. Once Post-
greSQL is ready to accept connections, the db_setup service
is initiated. In case the database is being initiated for the first
time, it ensures the database schema ( (Fig. 2) ) is initiated and
the original dataset (Table 1) is populated. It’s important to
note that the data was obtained directly from the database and
was already processed by the company ETL pipeline; thus,
the pipeline of this project is initiated by directly inserting the
data into the database. Once this process is finished, it creates
and executes a procedure for generating and populating the
data that will later be used for modeling customer survival.
The composition of the table can be seen in (Appendix 1
Appendix 2) . It is important to note that volume mapping
was implemented to ensure the information in the database is
not lost when the containers are stopped.

Fig. 2. Entity-Relationship Diagram

B. Modelling

Once the database setup is finished, the model container
is initiated. It involves retrieving the dataset intended for
modeling survival from the db, choosing an optimal dis-
tribution for the AFT model among Weibull, Log-Normal,
and Log-Logistic distributions based on Akaike information
criterion (AIC), fitting the model, generating customer survival
predictions for a predefined interval of 30 days and adding the
obtained predictions to the database.

Let’s also discuss the modeling process and key findings.
Initially, Exploratory Data Analysis was performed for the
obtained survival data. Even though feature engineering was
administered in the database setup section, some changes were
employed to handle highly correlated or significantly skewed
features.

Afterward, the Kaplan-Meier technique was applied, and the
survival curve for the model was plotted (Fig. 3). This curve
illustrates the proportion of subjects surviving as a function of
time, providing valuable insights into the survival experience
of the population under study. In our case, the curve displays
a promising trend - survival probabilities decrease with time.

Next, the main modeling technique - AFT, was applied.
The lowest AIC value of 31392.700205122117 was yielded for
Log-Normal distribution. Therefore, this model was chosen as
the optimal one. The model was fit, and insignificant variables
were removed to reduce model complexity. A summary of the
obtained model can be seen in (Fig. 4)

1) Variable Interpretation: The coefficients of the AFT
model are interpreted as follows: a unit increase in a covariate
leads to a change in the average/median survival time by a
factor of exp(coef).

o Contract Period: Each additional unit of the contract
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Fig. 3. Survival Curve of Kaplan-Meier

period is associated with an increase in the hazard by a
factor of 1.024.

Interest Rate (exp_int): A one-unit increase in the
interest rate is associated with an increase in the hazard
by a factor of 1.025.

FICO Score (ficoscore): Each one-unit increase in
the FICO score is associated with an increase in the
hazard by a factor of 1.009.

Region (marz_...): The reference group for these
variables is Yerevan. Significant differences were found
for the Lori and Syuniq regions compared to Yerevan, as
well as for missing values. All three variables exhibit
a decreasing effect on hazard compared to Yerevan.
Notably, the Syuniq region showed the lowest p-value,
indicating a decrease in the hazard by a factor of 0.299
compared to Yerevan.

Mobile Operator (mobile_operator_ ...): The
reference group for these variables is Ucom. Significant
differences were observed for the Beeline and Viva-
celIMTS operators compared to Ucom. Both variables
demonstrate an increasing effect on hazard compared to
Ucom, with Beeline increasing hazard by a factor of 1.47
and VivacellMTS by a factor of 1.278.

Number of Dependents (n_dependents): Each ad-
ditional dependent is associated with a decrease in the
hazard by a factor of 0.735.

Number of DPDS (n_dpds): Each additional occur-
rence of a missed payment is associated with an increase
in the hazard by a factor of 1.392.

Number of Vehicles (n_vehicles): Each additional
vehicle is associated with an increase in the hazard by a
factor of 1.316.

Number of Paid Loans (npaidcount): Each addi-
tional paid loan in the Company is associated with a
decrease in the hazard by a factor of 0.919.

Paid Amount (paidamount): Each one-unit increase
in the paid amount is associated with an increase in the
hazard by a rather small factor.

Risk Class (riskclass_ . . .): The reference category
for these variables is the Standard risk class. Being in

a risk class other than Standard significantly increases
hazard.

Fig. 4. AFT Model Summary

Finally, partial effects on outcome were plotted to compare
the baseline curve of the model versus what happens when a
covariate is varied over values in a group and assess feature
impacts (Fig. 5). Key findings include:

Contract Period (contractperiod): The shorter the con-
tract period of the client’s previous loan, the higher the
likelihood of him/her returning to take another one.
Interest Rate (exp_int): The lower the interest rate of
the client’s previous loan, the higher the likelihood of
him/her returning to take another one.

FICO Score (ficoscore): The lower the FICO Score, the
higher the probability of him/her taking another loan.
Moreover, if the client has no previous loan history (FICO
Score is 0), then he/she is significantly more likely to take
another loan.

Number of Closed Loans (nPaidCount): The more
loans the client has paid off in the Company, the higher
the likelihood that the client will take another one.
Number of DPDS (n_dpds): The more times the client
has missed his/her payment date, the lower the likelihood
that the client will take another loan.

Number of Vehicles (n_vehicles): The fewer cars the
client has, the higher the likelihood that the client will
take another one.

Paid Amount (paidamount): The more the client has
paid for his latest loan, the higher the likelihood that the
client will take another one.

Number of Dependents (n_dependents): The more
dependent the client has, the higher the likelihood of him
returning to take another loan.

Mobile Operator: In comparison with the Ucom mobile
operator, customers of Beeline and VivacellMTS have a
lower likelihood of the event occurring.

Region: In comparison with Yerevan, being from the
regions of Syuniq and Lori also negatively impacts the
likelihood of a client returning for another loan.

Risk Class: Not having a “Standard” risk class is also
associated with a lower likelihood of the client returning
to take another loan.
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Fig. 5. Feature Effects

C. API

The final structural component of the project is the API,
which is connected to the database and can either retrieve data
from the database or insert new records. The API currently
offers 5 actions:

¢ Retrieve Client Information: The
/get_client_info/ endpoint allows users to
retrieve information about clients based on their unique
client IDs (cliids).

¢ Query Survival Data: The /get_survival_data/
endpoint enables users to query survival data based on
prediction period, survival probability limits, and creation
date. This functionality is particularly useful for identi-
fying target groups for customer retention efforts.

e Create Outbound Calls: The /create_call/ end-
point facilitates the creation of outbound call records in
the system. Customer service operators can record the
call status and comments related to their outbound call
activities.

o Create Outbound Text Messages: The
/create_text/ endpoint allows users to generate
outbound text messages for one or more clients. Users
specify message details such as sent status and content.

e Create Outbound Emails: The /create_email/
endpoint provides functionality for creating outbound
email communications. Users provide email details, in-
cluding recipient email address, sent status, and content,
along with a list of client IDs (cliids) to send the emails
to.

V. CONCLUSION

Overall, this project yielded a comprehensive data pipeline
stretching from database setup, modeling, and an API. The
implemented model aims to predict the survival probabilities
of the clients using an AFT model, which can be utilized to

optimize customer retention efforts. For example, customers
with a moderate level of survival probability who are at risk of
not taking another loan from the Company can be targeted by
the call center operators and offered some special promotions
encouraging the customer to remain with the company.

In order to capture the true effect of utilizing the infras-
tructure proposed in this project, it is advised to set test and
control groups of clients. The control group will continue to
be treated using current Company practices, whereas the test
group will be targeted based on their survival predictions to
assess whether the proposed model brings about statistically
significant improvements to company retention levels.
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Appendix 1: The Composition of Tables

VI. APPENDIX

of Original Dataset

Table Column Description Data Type
marz marz_id Unique identifier of each region. Integer
marz marz Name of region. Varchar
consumer_client cliid Unique identifier of each client. Integer
consumer_client gender Gender of client. Varchar
consumer_client birth_date Birth date of client. Datetime
consumer_client marz_id Origin region identifier for the client. Integer
consumer_client phone Phone number of the client. Varchar
consumer_client mobile_operator | The mobile operator of the client. Varchar
consumer_client email The email of the client. Varchar
consumer_family_members | row_id Unique identifier of each row. Integer
consumer_family_members | cliid Identifier of client. Integer
consumer_family_members | relation Identifier of relation (3 - spouse, 5 - dependent). Integer
consumer_main app_id Unique identifier of each loan application. Integer
consumer_main ap_date Date of loan application. Datetime
consumer_main cliid Identifier of client. Integer
consumer_main exp_int Interest rate. Float
consumer_main status Status of application (14 - disbursed). Integer
consumer_main apl_stage Stage of application (28 - closed, 29 - active). Integer
consumer_main origin_details Type of loan applied for. Integer
consumer_main npaidcount Number of previously closed loans. Integer
consumer_main naplcount Number of previous applications. Integer
consumer_main n_dpds Number of times the client paid the past due date. | Integer
consumer_main max_dpd Maximum days paid past due. Integer
consumer_main dsti_income Debt service-to-income (DSTI) modelled income. Float
consumer_main osm Difference between total income and liabilities. Float
consumer_main n_salary Officially registered salary. Float
consumer_hc loan_id Unique identifier of each loan. Integer
consumer_hc app_id Unique identifier of each application. Integer
consumer_hc issue_date Date the loan was issued. Datetime
consumer_hc close_date Date the loan was closed. Datetime
consumer_hc riskclass Risk class of the client. Varchar
consumer_hc contractperiod The contract period of the loan. Integer
consumer_hc ficoscore FICO Score Integer
consumer_hc paidamount Amount paid back. Float
consumer_hc initialamount Amount disbursed. Float
eceng_vehicle_info row_id Unique identifier of each row. Integer
eceng_vehicle_info app_id Identifier of loan application. Integer
eceng_vehicle_info reg_num Registration number of vehicle. Varchar
eceng_vehicle_info released The year the vehicle was released. Varchar
eceng_vehicle_info model_name The name of the model of the vehicle. Varchar
eceng_vehicle_info recording_date The date the vehicle was recorded. Datetime
eceng_vehicle_info fuel_type The type of fuel the car operates on. Varchar
eceng_ces_data row_id Unique identifier of each row. Integer
eceng_ces_data app_id Identifier of loan application. Integer
eceng_ces_data orderdate The date the proceeding was ordered. Datetime
eceng_ces_data inputdate The date of input of the proceeding. Datetime
eceng_ces_data inquestdate The date the proceeding was inquested. Datetime
eceng_ces_data recoversum The amount to be recovered. Float
eceng_ces_data inquestrem The remainder amount. Float
eceng_ces_data inqueststate The state of the inquest. Varchar
eceng_ces_data inquesttype The type of the inquest. Varchar




Appendix 2: The Composition of Tables introduced during the project.

survival_data cliid Identifier of the client. Integer
survival_data app_id Identifier of the client’s latest loan. Integer
survival_data ap_date Date of loan application. Datetime
survival_data close_date Date the loan was closed. Datetime
survival_data contractperiod The contract period of the loan. Integer
survival_data paidamount Amount paid back. Float
survival_data initialamount Amount disbursed. Float
survival_data exp_int Interest rate. Float
survival_data riskclass Risk class of the client. Varchar
survival_data serveddays The number of days the loan was active for. Integer
survival_data npaidcount Number of previously closed loans. Integer
survival_data naplcount Number of previous loan applications. Integer
survival_data n_dpds Number of times the client paid the past due date. Integer
survival_data max_dpd Maximum days paid past due. Integer
survival_data age Age of the client. Integer
survival_data gender Gender of the client. Varchar
survival_data n_salary Registered salary of the client. Float
survival_data n_vehicles Number of vehicles registered to the client. Integer
survival_data n_dahk Number of legal proceedings of the client. Integer
survival_data n_dependets Number of dependents of the client. Integer
survival_data been_married Marital status (0: Never been married, 1: Has been married). Integer
survival_data sum_dahk Amount (AMD) of enforcement proceedings of the client. Float
survival_data mobile_operator The mobile operator. Varchar
survival_data tenure Tenure, the duration between the client closing his/her latest loan (in 2021) and taking the next. | Integer
survival_data event Event, a boolean indicating if an event occurred (True if took another loan). Boolean
survival_predictions | row_id Unique identifier of each row. Integer
survival_predictions | date_created Date the prediction was created on. Datetime
survival_predictions | cliid Identifier of the client. Integer
survival_predictions | pred_period Prediction period. Integer
survival_predictions | survival_probability | Survival probability. Float
outbound_calls row_id Unique identifier of each row. Integer
outbound_calls cliid Identifier of the client. Integer
outbound_calls phone Phone number of the client. Varchar
outbound_calls date_called Date the outbound call was made. Datetime
outbound_calls call_status The status of the call. Varchar
outbound_calls comment Additional comments. Varchar
outbound_calls operator_name The name of the calling operator. Varchar
outbound_text row_id Unique identifier of each row. Integer
outbound_text cliid Identifier of the client. Integer
outbound_text phone Phone number of the client. Varchar
outbound_text date_sent Date the outbound text was sent. Datetime
outbound_text sent_status The status of the message. Varchar
outbound_text content The message content. Varchar
outbound_email row_id Unique identifier of each row. Integer
outbound_email cliid Identifier of the client. Integer
outbound_email email Email of the client. Varchar
outbound_email date_sent Date the outbound email was sent. Datetime
outbound_email sent_status The status of the email. Varchar
outbound_email content The email content. Varchar




