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Abstract—The capstone project aims to train machine learning
(ML) models with differential privacy (DP) algorithms to provide
data privacy. We focus on a scenario where central DP is
applied on models with black-box access to ensure user-level
privacy. We train both Neural Network and Logistic Regression
models by applying DP with the Gaussian mechanism, DP-SGD
algorithm, on a sensitive Census Adult dataset to ensure DP
guarantees. The project aims to compare the results of manual
implementations of DP with the existing DP libraries, as well as
to maintain high accuracy parallel to privacy. Furthermore, we
explore federated learning with differential privacy to preserve
model training privacy across decentralized devices. The project’s
target audience includes companies and individuals that provide
ML services as an API or provide models with trained parameters
to third parties.
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I. INTRODUCTION

Data privacy is an essential concept in the modern techno-
logical world that refers to the protection of personal infor-
mation, mainly including sensitive data such as financial and
medical records. In fields such as data science and machine
learning, where data is at the core of every project, ensuring
the privacy guarantees of the data of any individual is of utmost
importance. Implementing data privacy algorithms such as
differential privacy in machine learning is necessary to ensure
privacy between businesses and users.

DP is a powerful algorithm that provides robust privacy
guarantees, but it is not a standard algorithm. The implementa-
tion of DP can vary depending on the complexity of the model
and dataset characteristics. There are various approaches to
applying DP in ML projects. One common way is to add noise
during model training. This technique ensures data privacy
guarantees for the model and provides accurate predictions for
users without significantly affecting the model’s performance
[1].

Considering the increasing number of machine learning
applications over the past years and their vulnerabilities, the
importance of data privacy is also rising, which brings up the
reason for this project’s implementation.

In this capstone project, we aim to protect individuals’
sensitive data while training ML models by ensuring data
privacy. The project suggests using a differential privacy
algorithm, which adds measured noise to the training process

in a way that individual instances of the dataset are unin-
terpretable while the output of a model or statistical analysis
remains nearly unchanged. This strategy ensures that adding or
removing a single data point has minimal effect on the overall
outcome. In addition to the differential privacy algorithm,
we apply federated learning, another tool for preserving data
privacy. By applying these methods, we want to train a well-
performing model while maintaining data confidentiality.

In the next sections of the report, we provide a detailed
explanation of the steps we took to complete this project.
After introducing the main goal of the capstone project, we
continue with discussing the research results on the topic
in the Literature Review section. We provide more details
about the differential privacy algorithm under the Differential
Privacy section, including the definitions, properties, mech-
anisms, application cases, and its usage in ML applications,
more specifically, introducing DP-SGD algorithm. In the next
section, Threat Scenarios and Possible Attacks, we provide
information on threat scenarios and define an attack against
the DP model. The next section is Federated Learning,
where we explain how federated learning works. The Models
and Methods section presents our dataset description, data
preprocessing steps, implementations of Neural Network and
Logistic Regression models with DP, and their results. It also
includes federated learning with differential privacy and at-
tack implementation descriptions. Lastly, Conclusions section
gives a summary of the project and ideas for future work.

II. LITERATURE REVIEW

One common vulnerability that ML models have is that they
leak information about training data. One famous case is when
Carlini et al. [2] organized an extraction attack on the GPT-2
model and proved that large language models memorize their
training data. The experiment showed that searching particular
keywords can reveal an individual’s personal data like name,
email address, and phone number. The situation would be
much worse if the model included highly sensitive data, such
as medical data. The article underlines the importance of using
differentially private techniques while training to ensure data
privacy.

Garfinkel et al. [3] presented the challenges that statistical
agencies, like the U.S. Census Bureau face, considering the
fact that they are working with individuals’ data, that needs
protection. They usually publish reports and statistical analyses



based on Census data, which are vulnerable to database
reconstruction attacks (DRAs). DRAs can cause privacy risks
by recovering personal data from published statistical tables.
The paper discusses the importance of adding noise to the
published statistics with the help of DP. As an example,
the article notes that the 2020 Census decided to approve
differential privacy usage to adequately add noise to data for
confidential statistical results [3].

Medical data analyses with machine learning algorithms
promote drug discoveries and disease predictions, which are
crucial for healthcare. To protect the privacy of medical data
prior to publishing and mining it, Liu et al. [4] proposed the
application of differential privacy.

Fig. 1: Differential Privacy applications in different AI fields
[5].

Zhu et al. [5] discussed the importance of differential pri-
vacy in different fields of Artificial Intelligence (AI), presented
in Figure 1. The article underlines that differential privacy,
besides guaranteeing data privacy, provides stability, security,
fairness, and composition. Stability ensures that the model’s
outcome does not change when removing one entry from the
data. Security and fairness create secure AI models that are
not dependent on sensitive parameters such as gender. Finally,
composition is another property of DP that ensures that in case
of multiple operations on the same data, the privacy guarantees
continue to hold.

Federated learning is another machine learning technique
that ensures the training data stays private to local devices.
However, this method alone cannot guarantee complete data
privacy. To secure federated learning, Wei et al. [6] suggest
adding differential privacy while training a model. According
to their method, they add measured noise to the model results
on each local device before combining with the central server,
which preserves the privacy of sensitive information.

Banse et al. [7] implemented federated learning with differ-
ential privacy to train models on non-i.i.d datasets. The article
experimented with the model on three different datasets. The

first dataset is the famous MNIST, which contains images of
handwritten digits. The second is the FEMNIST dataset, sim-
ilar to the first, and the third dataset includes medical records
from 120 patients. The paper results show that adding data
privacy does not significantly harm the model’s performance.

III. DIFFERENTIAL PRIVACY

This section explains the mathematical background of the
DP algorithm and provides information about its properties,
guarantees, and different usage scenarios.

A. Definitions of DP

Dwork et al. [8] firstly introduced the DP algorithm in 2006
to preserve privacy in statistical databases. The algorithm sug-
gested adding random noise to the query’s result to ensure that
the query’s actual result would not leak data. To understand
the algorithm better, the following assumptions and notations
are defined:

• The data provider fully trusts the server that possesses
the database or simply the dataset.

• The dataset X presents the input space. Neighboring
datasets are X ′, which are different from X only by one
record.

• M is a randomized mechanism.
• Y presents the output space of M.
• ε is the privacy parameter, which is a positive scalar.
Definition 1: (Differential Privacy) [8]

A mechanism M is ε-differentially private if for any two
neighboring datasets X and X ′, and for any output Y ∈ Y:

P [M(X ) ∈ Y] ≤ eε · P [M(X ′) ∈ Y]. (1)

Definition 1 guarantees that the output of the same query
from two similar datasets will not differ much. The difference
between the two outputs is defined by ε, which is common as
a privacy parameter or privacy budget. If ε is a small number,
from Definition 1, it follows that adding or removing one
piece of data from the dataset will not drastically change the
query result. This method ensures that the results will not leak
any individual information from the dataset after querying. In
different use cases, the piece of data can be different, meaning
that it can refer to a single row of information or a group of
rows that include information about the same person. This
project concentrates on user-level privacy, about which more
details can be found in Section III-D2.

Depending on the task and how much data is present, the
choice of ε can vary in different applications. With the help of
ε, it is possible to control the desired size of privacy. Smaller
values of ε ensure more privacy as they bring closer results in
Equation 1. However, it is essential to note that taking a very
small ε can negatively affect the quality of the query [9]. So,
paying attention to the tradeoff between privacy and accuracy
is vital.

In addition to the above-defined Definition 1, there is a more
flexible version of the DP definition commonly used for ML



model privatization, called approximate DP. It is the relaxation
of the standard definition, which offers improved utility [10].

Definition 2: (Approximate Differential Privacy) [8]
A mechanism M is (ε, δ)-differentially private if for any two
neighboring datasets X and X ′, and for any output Y ∈ Y:

P [M(X ) ∈ Y] ≤ eε · P [M(X ′) ∈ Y] + δ. (2)

ε and δ are non-negative numbers in Definition 2 that
control the system’s privacy levels. The value of δ presents
the relaxation in this algorithm. It quantifies the probability of
an adversary being able to differentiate between the original
and neighboring datasets using the model or query results. If δ
equals to zero, the mechanism will be ε-differentially private.
If δ is non-zero and has a small value, then there is less risk
of privacy violations and stronger privacy guarantees [11].

B. Properties of DP

To provide data privacy, DP suggests multiple properties
that make the algorithm robust and adjustable for different
applications.

1) Sequential composition:
One of the important properties of DP is Sequential com-

position:

Theorem 1. Sequential composition
If F1(x) satisfies ϵ1-differential privacy and F2(x) satis-
fies ϵ2-differential privacy, then the mechanism G(x) =
(F1(x), F2(x)) which releases both results satisfies ϵ1 + ϵ2-
differential privacy.

This property gives a chance to apply multiple privacy
analyses on the same input dataset. To estimate the total
privacy result, one needs to sum individual mechanism’s ε-
s and δ-s [17].

2) Parallel composition:
The next property is called Parallel composition:

Theorem 2. Parallel composition
If F1(x) satisfies ϵ-differential privacy and we split a dataset
X into k disjoint chunks such that x1∪ . . .∪xk = X , then the
mechanism which releases all of the results F1(x), . . . , Fk(x)
satisfies ϵ-differential privacy.

Compared to Sequential composition, Parallel composition
divides the dataset into disjoint subsets and separately applies
private mechanisms. This method ensures that the mechanism
is applied to each data point only once as the subsets are
disjoint. In contrast to Sequential composition, which would
suggest kε-differential privacy, Parallel composition provides
ε-differential privacy [17].

3) Post-processing:
The third important property of DP is Post-processing:

Theorem 3. Post-Processing
If F (x) satisfies ϵ-differential privacy, then for any determin-
istic or randomized function g, g(F (x)) satisfies ϵ-differential
privacy.

The property ensures that it is impossible to undo the
privacy protection provided by DP. So, any change to the
output of DP will still preserve a differential privacy guarantee
with the same level of privacy [17].

C. Mechanisms of DP

There are multiple mechanisms that the DP algorithm can
use to provide data privacy. The most famous and widespread
three mechanisms are Laplace, Gaussian, and Exponential
[10]. The first two options work for queries that output
numerical answers. As their names can tell, they add random
noise to the query’s result either from Laplace or Gaussian
distribution. The third option, the Exponential mechanism,
is used when the outcome is not numeric but categorical,
and respectively, in this case, the added noise will be from
Exponential distribution.

Before introducing each mechanism in more detail, it is
important to understand the concept of sensitivity. Sensitivity
shows how much the query’s output can change when adding
or removing one piece of data from the input dataset. There
are two types of sensitivity [12]:

• Global sensitivity calculates the maximum change in the
query’s result when one piece of data changes in any
dataset. This approach considers all possible datasets that
differ by one data point.

• Local sensitivity again measures the maximum differ-
ence in the outcome, which is caused by one element
change within a dataset. Compared with global sensitivity,
the local sensitivity considers changes within a specific
dataset but not all possible datasets.

In our project, we will focus on using local sensitivity and
will calculate the changes within the chosen dataset, for which
we will provide more details in Section VI-A. Below is the
formal definition of sensitivity.

Definition 3: (L1-Sensitivity) [13]
The L1-sensitivity of a function f : Xn → Rk is defined as:

∆(f) = max ∥f(X)− f(X ′)∥1, (3)

where X is the original dataset and X ′ are neighboring
datasets.

Thus, the DP mechanisms have a general approach; they
add statistical noise to the data to make it private while
keeping the function or model performance unchanged. To
decide the amount of noise, one needs to consider the four
main components presented in Figure 2: sensitivity, desired
epsilon, desired delta, and the type of noise to add. We defined
sensitivity above and discussed epsilon and delta in Section
III-A. It remains to introduce the three known mechanisms of
DP to understand what possible types of noises can be added
to the DP model.



Fig. 2: Factors on which noise depends [12].

1) Laplace Mechanism:
The definition below represents the Laplace distribution,

which is the basis of the Laplace mechanism.
Definition 4: (Laplace distribution) [13]

The Laplace distribution with location and scale parameters 0
and b, respectively, has the following density:

p(x) =
1

2b
exp

(
−|x|

b

)
. (4)

The variance of the Laplace distribution is 2b2. It is a
symmetrical distribution with a higher peak compared to the
normal distribution. Laplace distribution is a combination of
positive and negative Exponential distributions as x ∈ R.

Definition 5: (Laplace mechanism) [13]
Let f : Xn → Rk. The Laplace mechanism is defined as:

M(x) = f(x) + (Z1, . . . , Zk), (5)

where the Zi are independent Laplace
(

∆f
ε

)
random variables.

The scale parameter of the mechanism grows larger as the
sensitivity (∆) of the function increases. That is intuitive,
as the functions with higher sensitivity are likely to change
hugely in case of adding or removing one piece of data, which
means functions need more noise to provide data privacy.
Additionally, the scale parameter decreases when the privacy
parameter ε increases.

The Laplace mechanism provides (ε, 0)-differential privacy
or is ε-differentially private [14].

2) Gaussian Mechanism:
An alternative to the Laplace mechanism is the Gaussian

mechanism, which adds noise from Gaussian distribution.
Compared to Laplace, the Gaussian mechanism does not pre-
serve pure ε-differential privacy; it ensures (ε, δ)-differential
privacy.

Definition 6: (Gaussian mechanism) [15]
Given a real-valued function f(x). The Gaussian mechanism
is defined as:

F (x) = f(x) +N (0, σ2), (6)

where N (0, σ2) denotes Gaussian noise with center 0 and
variance σ2 = 2 log(1.25/δ)·(∆f)2

ε2 .
In contrast to Laplace, the Gaussian mechanism provides

weaker guarantees of DP; however, it suggests some ad-
vantages over the first one. The Laplace mechanism only
accepts L1 sensitivity, while the Gaussian mechanism can
accommodate both L1 and L2 sensitivities. This characteristic
makes the Gaussian mechanism powerful, as in cases where
L2 sensitivity is lower than L1 sensitivity, the mechanism can
add less noise and achieve better results. That is why the DP-
SGD algorithm is commonly used in ML applications, which
is based on the Gaussian mechanism [10]. More details about
the algorithm will be provided in Section III-F.

3) Exponential Mechanism:
The mechanisms mentioned above (Laplace and Gaussian)

are for queries with numeric outputs, which add noise directly
to the outputs. There is also the Exponential mechanism,
which can handle non-numeric results and return the query
result without noise while preserving privacy. The Exponential
mechanism satisfies ϵ-differential privacy.

Definition 7: (Exponential mechanism) [16]
The Exponential mechanism is defined based on the following
points:

• The analyst selects a set R of possible outputs.
• The analyst specifies a scoring function u with global

sensitivity ∆u.
• The exponential mechanism outputs r with probability

proportional to:

exp

(
ϵu(x, r)

2∆u

)
(7)

The Exponential mechanism selects an output from the
probability distribution that is defined in Equation 7. The
selected output is the most appropriate output among the
possible outputs that also preserves privacy [15].

D. Application Cases

This section will discuss various problem settings in which
DP might be applicable, categorizing cases based on the
following factors: whether the data providers trust a central
server to aggregate their data, whether protection is needed
for individual rows or groups within the dataset, and which
part of the architecture is susceptible to becoming public.

1) Global vs Local DP:



Fig. 3: Global Differential Privacy and Local Differential
Privacy [18].

Local DP (LDP) accounts for settings where data contribu-
tors do not trust the centralized server or a data aggregator. The
solution LDP suggests for such cases is that individuals add
noise to the raw input data before sharing it with a centralized
aggregator. The noise addition preserves the privacy of the
original data by ensuring that the aggregator has no access
to the original data. However, the LDP approach increases
the overall noise level in the dataset, which can negatively
affect the quality and accuracy of the model. Consequently,
people usually use higher epsilons in the case of LDP to
achieve meaningful model results, which limits the practical
applicability of the method [18].

Global or Central DP (CDP) addresses the scenario when
data providers trust their sensitive data to a centralized server
and a data aggregator, usually referred to as a trusted curator,
who is responsible for conducting statistical analysis or run-
ning ML models following privacy constraints. Consequently,
any outcomes released to third parties must respect the privacy
of data providers. In this paper, we concentrate on Global DP.
In our scenario, we are in the role of the trusted curator, whom
the raw dataset is given on which we will implement the model
and use DP to ensure data privacy.

2) User-level privacy vs group-level privacy:
The setting might also differ based on whose privacy

preservation is under question. The conventional concept of
differential privacy accounts for ensuring privacy for each data
instance taken separately, as it ensures that the outcome of
the mechanism does not vary a lot as a result of adding or
removing a single instance of the dataset. Ensuring differential
privacy in this setting is referred to as user-level individual
privacy.

In other settings, the problem definition might require en-
suring privacy not for individuals but for groups of individuals
where groups form a partition of the dataset. Examples might
be people who share a common ethnic background, a company
of employment, etc. In such a setting, adjacent datasets are
defined as:

Definition 8: (Group-level adjacent data sets) [19]
Two data sets D1 and D2 are group-level adjacent data sets
of each other if ∃ Gi ∈ G such that D1 = D2 ∪ Gi.

In the context of group-level differential privacy, a differ-
entially private mechanism A is defined as:

Definition 9: (Group differential privacy) [19]
A randomized algorithm A guarantees ϵg-group differential
privacy if for all adjacent data sets D1 and D2 differing by
at most one group Gi ∈ G, and for all possible results S ⊆
Range(A),

P [A(D1) = S] ≤ eϵg × P [A(D2) = S]

In the scope of this project, we implement user-level privacy.
3) DP Settings:
Depending on what part of the model the attacker has access

to, the level and methods needed for protection may change.
There are different parts of an ML system that can be at risk
and can be violated:

1) If the raw data, which includes sensitive information,
needs to be published, then the training dataset itself
needs privatization.

2) The attacker might have access to the updates from in-
dividual users, precisely, the intermediate or aggregated
model information. This can be a common concern in
the case of federated learning, which we will discuss in
more detail in Section V.

3) Another scenario suggests that the final model structure
and parameters are publicly available, which is the case
with ML as a service platforms that provide with white-
box access to the model.

4) The final scenario infers that only the predictions of the
model are public, but not the model structure or param-
eters. These are the black-box model access examples.
[20].

We can limit access to trusted people for some parts, like
the raw data and training dataset. However, for other parts,
like the final model parameters and predictions, we need to
use data privacy techniques to protect them, as they may be at
risk when using the model [10]. In the scope of this project,
we consider the fourth setting.

E. DP in ML

There are three possible applications of the DP algorithm
in machine learning applications [10]:

• The first variant suggests using DP at the input level.
Using the Post-processing property of DP explained in
Section III-B3, after making input data differentially
private, any model trained using that data and outputs
of that model will also be differentially private.

• The second approach is adding DP during the training ML
model. There are two possible ways based on the appli-
cation. Either data privacy is applied only on labels by
treating independent features as public, or both features
and labels are private and need protection. The second
one is the most common case in ML when people need



privacy to train ML by considering features and labels.
In these cases, the DP-SGD algorithm is commonly used,
which we will discuss in Section III-F.

• The third case is when the model is not public, but only
its publications are, so there is a need to apply DP to the
ML predictions. This approach is applicable when users
only have access to the model predictions via a trusted
server by providing their own input.

Our project focuses on applying DP while training the ML
model using the DP-SGD algorithm to preserve the private
model training process.

F. DP-SGD

Stochastic gradient descent (SGD) is an optimization
method commonly used in ML applications [21]. It serves as
the basis for the DP-SGD algorithm, which is an application
of the Gaussian Mechanism, as shown in Algorithm 1.
Section VI will discuss our experiments and implementations
using DP-SGD in more detail.

Algorithm 1: (Differentially private SGD) [22]
(Dataset D, loss function LD(w), learning rate r, batch size
b, noise scale σ)

1) for t ∈ [T ] do
2) Randomly sample a batch Bt with |Bt| = b from D

item for each sample xi ∈ Bt do
3) gi = ∇Li(wt)
4) if gi > threshold
5) gi = gi∗ threshold /||g||2
6) G̃B = 1

b

(∑
i ḡi +N

(
0,

2 log( 1.25
δ )·(∆f)2

ε2

))
7) w̃t+1 = w̃t − rG̃B

8) Return w̃T and accumulated (ϵ, δ)

As Algorithm 1 suggests, a machine learning algorithm will
be made differentially private if each step in the process of
gradient descent is preceded by gradient clipping and noise
addition.

Gradient clipping involves scaling down the gradient if its
L2 norm is above a predefined threshold. The purpose of
gradient clipping is to prevent minor changes in the input
from causing significant changes in the output function, thus
ensuring that data points that are slightly different from the
rest of the training dataset do not affect the output. This
method also handles outliers. As a result, the contribution
of individual datapoints to the output function is decreased,
unless the datapoint is similar to the rest of the dataset.

Noise addition entails generating a vector of the size of theta
of independent sample from the Gaussian distribution with a
variance of 2 log(1.25/δ)·(∆f)2

ε2 , and adding the two vectors. ∆f
refers to the L2 sensitivity of the mechanism, which is defined
in Definition 10. As sensitivity accounts for the maximum
contribution of a single data point, the greater value implies a
greater variance of the added noise is needed to conceal the
contribution of individual data points to the output function.

Definition 10: (L2-Sensitivity) [12]
The L2-sensitivity of a function f : Xn → Rk is defined as:

∆(f) = max ∥f(X)− f(X ′)∥2, (8)

where X is the original dataset and X ′ are neighboring
datasets. The function calculates all L2 norms between each
neighboring dataset and the original dataset and, in the end,
takes the maximum norm.

IV. THREAT SCENARIOS AND POSSIBLE ATTACKS

In the scope of this paper, we discuss the Membership
Inference Attack, or MIA, which presents a scenario where
the adversary, who has access to a data record and an ML
model, intends to infer whether the given record has been
part of the training set of the model. MIA poses a threat to
the privacy of the individual to whom the given data record
belongs. Firstly, the information about whether he participated
in the study or not may inherently be confidential. Secondly,
considering a scenario where the adversary has partial access
to an individual’s data record, for example, having knowledge
about some of the variable values of the individual that the
model takes as input, as well as knowing that the individual’s
data record is in fact part of the training set, the adversary
may experiment with the values of remaining variables, until
the attack mechanism indicates that the given vector of records
has been part of the training set, thus, revealing the individual’s
information regarding these remaining variables, which may
potentially be private.

MIA is often used to attack ML models that have been
created using Machine Learning as a Service platform, where
any individual is able to upload a dataset, specify the type
of the ML task to be performed on the dataset, and receive a
corresponding model. Some ML as a service platforms provide
the user with the model structure and its trained parameters.
In this case, the user has white-box access to the model. Other
ML-as-a-service platforms only provide API access to the
model, meaning the user has no access to the structure and
the parameters of the model; however, he is able to query it
through the provided API. In this case, the user has black-box
access to the model.

Moreover, some ML as a service platforms, regardless
of whether they provide white-box or black-box access to
their models, allow not only the client who requested the
development of a model but also third parties to have access
to it. Thus, third parties may perform MIA to attack the
training dataset of the models, gaining access to any private
information present in them.

In this paper, we examine MIA with black-box access to the
model, as this scenario offers a broader insight into possible
attack methods.

In the setting of MIA, the model being attacked is referred
to as the target model. Additionally, shadow models must be
developed. The purpose of the shadow models is to mimic the
behavior of the target model. The conditions of the shadow
models are rather relaxed, allowing them to be of any structure
as long as they solve the same ML task as the target model.



This flexibility makes MIA suitable for black-box attacks.
Another requirement for the shadow models is that they have
the same input format as the target model. This entails having
the same number of variables as the target model, with each
variable being of the data type corresponding to the target
model. The output of the shadow models lies within the
continuous set [0:1], representing the confidence of the value
1 in the case of binary classification. Synthetic datasets may
be used for training the shadow models

Having trained the shadow models, the attack model must be
trained. It can be of any structure that enables solving binary
classification tasks, as the purpose of the attack model is to
distinguish whether the given data point was present in the
training set of the target model or not. During the training
process, the attack model takes a vector of length two as an
input, where the first element is the true label of a data point
that has or has not been in the training set of any of the shadow
models, and the second input is the output of the shadow
model. If the datapoint has been part of the training process
of any shadow model, the corresponding shadow model must
be used to get the predicted value. Otherwise, any shadow
model may be used. Once the attack model is trained, it can be
implemented to make predictions on the target model. Having
a data instance, the second element of the input vector can be
obtained using the black-box API, while the actual label of
the datapoint may be either known to the adversary or can be
experimented with different values. The purpose of the attack
model is to find any differences between the way the shadow
models perform on the data that has been in their training set,
as opposed to the ones that have not, and apply this knowledge
to the target model. The standard metrics used to evaluate the
performance of the attack model are precision and recall [23].

V. FEDERATED LEARNING

The term federated learning (FL) was first introduced by
Google in 2016. During that time, people started to pay
considerable attention to personal data privacy. There were
broad discussions on this topic, and big companies like
Facebook were under suspicion if they provided necessary
privacy while working with massive datasets of individuals.
As a solution, federated learning provides a new, efficient
technique for training ML models. Federated learning has
various applications in healthcare and finance and has massive
usage as it develops AI models while preserving the privacy
of individuals’ sensitive information [24].

Before explaining federated learning in more detail, let us
introduce the difference between centralized and decentralized
machine learning. In the case of traditional ML, all users’ data
is located in one place, usually called a data warehouse. The
model training process is done on the central server, and users
can access it. Figure 4 shows centralized ML.

Fig. 4: Centralized Machine Learning [25].

On the other hand, in the case of decentralized ML, the
training process is done locally for each device. So, there is
no need to communicate with the central server to complete
local training [25]. Figure 5 illustrates decentralized ML.

Fig. 5: Decentralized Machine Learning [25].

In federated learning, multiple users collaborate to train the
same model using the decentralized approach. Each user has
access to the model, trains it locally on an individual device,
and sends the local training updates to the central server,
where all separate model updates are aggregated. The steps
of federated learning are presented in Figure 6.

Fig. 6: Federated Learning [26].



Federated learning avoids sharing raw data centrally; it does
calculations on isolated datasets and only gathers local results
into the central server. Compared to distributed learning, in
the case of federated learning, local datasets do not need to
be independent and identically distributed, meaning that data
distributions can vary across devices [27]. Thus, federated
learning is another tool that preserves data privacy by reducing
the risk of centralized vulnerabilities.

FL offers multiple advantages while training models, includ-
ing reduced power consumption due to smaller data sizes in
local devices and privacy preservation due to keeping user data
locally without sharing with the central aggregator. Addition-
ally, federated learning provides better model performance by
considering multiple devices’ real-time training updates. There
are also some limitations besides all these advantages, as in
FL, user devices and datasets can be different, which in some
scenarios can create inconsistency or slow down the overall
training process [26].

Federated learning is a powerful tool that powers AI models
while ensuring data privacy during training. Its importance is
also evidenced by the fact that big companies like Google
[24], Apple [28], Amazon [29], Facebook [30], and Microsoft
[31] use the tool. Large companies pay huge attention to the
privacy of sensitive user information, which makes them more
successful. The companies use federated learning along with
differential privacy to ensure complete data privacy.

VI. MODELS AND METHODS

A. Data

The publicly available Adult Census income dataset was
chosen for our experiments. It not only involves sensitive
information about the data providers, such as their salary
range, but also contains demographic information, which is
the key factor enabling the adversary to infer the identity of
data providers.

The row dataset consists of 14 columns that contain de-
mographic information and the target column that indicates
the yearly salary of the individuals, categorizing it as either
above or below 50,000 USD. One downside of the dataset is
that it is imbalanced, with the two unique values of the target
column comprising the 75% and 25% of it. As a result of
data preprocessing, the column education-num was dropped.
Each unique value of the column education-num corresponded
to only one value in the column education, meaning that
the two columns carried the same information. Similarly, the
column relationship was dropped for its statistically significant
(Chi-squared test for independence, p = 0.0) similarity to the
column marital-status. The columns with continuous values
were scaled to the range [0; 1], while the columns with cate-
gorical values were dummified. When splitting the data into
train, validation, and test sets, the stratified sampling method
was applied to the column native-country, for its imbalanced
nature.

B. Neural Network Model

To solve the classification problem of our chosen dataset
described in Section VI-A, we implement a PyTorch neural
network (NN) model. The implementation includes classes and
functions to define the data loading process, model architec-
ture, training, and evaluation steps.

Our NN uses two fully connected (dense) layers with a
dropout regularization layer. The activation function ReLU
is applied after the first linear transformation to introduce
non-linearity to the model. After the activation function, the
dropout layer is called to provide regularization and avoid
overfitting. The model uses cross-entropy as a loss function,
which is commonly used for classification tasks. We use SGD
as our optimization method to implement DP further.

After defining the model, we first train it using standard
steps without DP. During each training epoch, the function re-
sponsible for training iterates over the training data, computing
the loss, performing backpropagation, and updating the model
parameters. Additionally, the function evaluates the model
performance based on the validation data. After each iteration,
the loss and accuracy of validation and training datasets are
monitored. The test accuracy of the trained model we are
reaching is approximately 86%, which is rather good in the
case of our imbalanced dataset. As in the case of imbalanced
datasets, it is expected that it is challenging for models to learn
data patterns and show high-accuracy results.

Next, we train the model using the steps mentioned above
and add DP to the training process. There is a PyTorch
library called Opacus, and we use this existing library to
preserve our data privacy. Opacus library is applying DP to
PyTorch models [32]. The library’s primary goal is to protect
individuals’ sensitive information while training the model
without affecting the model’s accuracy much. Opacus defines a
privacy engine that modifies the PyTorch optimizer to add DP.
The library focuses on stochastic gradient descent optimizer
and, as a result, provides a DP-SGD method for protecting
data privacy. The Opacus method does not directly affect the
original data but modifies the gradients of parameters during
model weight updates. The library undertakes two main steps
to implement DP-SGD:

1) First is the gradient clipping. The library is clipping the
L2 norm of gradients up to the predefined threshold dur-
ing the training process. It is done to prevent the gradient
exploding problem, which happens when gradients be-
come too large. So, to ensure that model parameters are
stable and do not affect the optimization process, Opacus
clips the gradients up to the given clipping threshold. To
decide on our clipping threshold, we researched other
projects’ used cases and did empirical testing to define it.
For our model, we choose the maximum gradient norm
to be 1.0.

2) The second step is adding noise to the gradients, a
crucial step in the DP-SGD algorithm. It is essential to
add the right size of noise to data, as adding extra noise
can affect the model performance, and adding very little



noise will fail to provide complete data privacy. Opacus
uses noise multiplier parameter to decide the amount of
noise to add the gradients. Higher values, as mentioned,
can provide strong privacy but will affect the model’s
accuracy, so it is vital to find the right amount to balance
privacy and utility tradeoffs. For our model, we choose
the noise multiplier equal to 1.1.

The below Figure 7 shows the visual representation of the
above-explained two steps.

Fig. 7: DP-SGD algorithm by Opacus library. [33].

Opacus library also takes input value for the delta parameter,
defined based on the desired privacy level. As we want to
provide more robust data privacy guarantees, we define the
delta parameter to a small number of 1× 10−5.

The library suggests accountants with three different pos-
sible mechanisms. As in our project, we are focusing on the
DP-SGD algorithm, we fix the Opacus accountant to use gdp
mechanism, which corresponds to the Gaussian mechanism.
One advantage of the Opacus library is that it, during the
training process, estimates the ε or privacy budget based on
the Dual and Central Limit Theorem (CLT) [34]. We achieve
nearly 84.6% accuracy with the Opacus DP library.

Finally, we manually implement the DP-SGD algorithm to
make our model differetially private. In the manual implemen-
tation, the logic of the DP-SGD algorithm is identical, as ex-
plained above; however, in this case, we manually implement
the gradient clipping and noise addition function without using
any existing library. We also manually define the sensitivity
function, which is vital to calculate for determining the amount
of noise to add gradients; however, as our dataset is rather
extensive and the computation power is not so enormous,
our computers could not compute these heavy functions of
sensitivity that is why we estimate the sensitivity based on
some subset of neighboring datasets instead of iterating over
all neighboring datasets.

Fig. 8: Training accuracy results with different data privacy
values.

In the manual implementation, similar to the Opacus case,
we define delta as a small number to have a robust private
model. Based on empirical tests, we choose the gradient
clipping parameter to be equal to 30. To select the ε parameter,
we train our model with different ε values as shown in
Figure 8. The plot shows that increasing ε provides better
accuracy results, which is logical as larger ε-s ensure less data
privacy but better model performance. To balance the privacy
and accuracy tradeoffs, we set ε to be equal to 0.8 to have the
best accurate and secure model choice.

For this approach, we achieve less accuracy compared to
our previous approach with Opacus, nearly 76.6%. This is
logical because the PyTorch Opacus library uses different
optimization techniques, which improve the overall result
quality.

During the whole training process, we use training and
validation datasets for model performance checking and, in the
end, use the test dataset for the final model evaluation. We use
Tensorboard to track the whole training process. Tensorboard
results from our standard training without DP are shown in
Figure 9.

Accuracy plots show a consistent increasing trend while
the loss gradually decreases, which indicates that the model
learning process is effective. Other performance metrics such
as sensitivity, specificity, precision, and F1 score demonstrate
values greater than 0.5 and closer to 1, which is also a
good sign of training results. However, the validation plots
of specified metrics display fluctuating patterns, constantly
increasing and decreasing. It possibly suggests that the model
faces challenges while generalizing unseen data.

Considering that the dataset is imbalanced, we emphasize
the F1 score, which balances precision and sensitivity and
is a valuable metric for imbalanced classes. In our case, the
F1 score is approximately 0.7, which assures that the model
performs rather well while training.



(a) Train and validation accuracy.

(b) Train and validation loss.

(c) Train and validation sensitivity (recall).

(d) Train and validation specificity.

(e) Train and validation precision.

(f) Train and validation F1 score.

Fig. 9: Tensorboard train and validation metrics monitoring
over 100 epochs (without DP NN model).

The table below shows a summary of the performance
metrics on the test dataset for the three training experiments
explained in this section.

TABLE I: Performance metrics on test dataset

Without DP With DP (Opacus) With DP (manual)
Accuracy 0.8596 0.8461 0.7663

Loss 0.3035 0.4855 14681610.4717
Sensitivity 0.7212 0.5479 0.3958
Specificity 0.9041 0.9419 0.8854
Precision 0.7075 0.7521 0.5262
F1 Score 0.7143 0.6339 0.4517

The table displays that without Differential Privacy (DP)
model shows higher accuracy (0.8596) than DP models, which
is natural, as adding data privacy affects model performance.
Notably, the loss rate for the model with manual DP imple-
mentation is high, which may be due to the complexity of the
model architecture. Despite the high loss, it is vital to note
that the loss function decreases during training, ensuring the
learning of the model.

Fig. 10: Comparison of training accuracy between models.

The visualization in Figure 10 compares the training ac-
curacy among three models. The PyTorch Opacus library
presents quite similar results to the model without DP. Com-
pared to the existing PyTorch library, the manually imple-
mented model achieves lower accuracy, considering the fewer
optimization techniques and tricks.

C. Logistic Regression Model
Our aim is to compare the performance of four models - our

implementation of logistic regression without DP, our imple-
mentation of logistic regression with the DP SGD algorithm,
our implementation of logistic regression with a variation of
the DP SGD algorithm that introduces an adjustable clipping
threshold, and the logistic regression with DP of the diffprivlib
package.

First, we implement a logistic regression without DP. Con-
sidering that the loss of the logistic regression, binary cross-
entropy, is a convex function and that theta, the vector of final



parameters, will converge to the global minima despite its
initialization, we initialize theta as the 0 vectors and assign
the step size to the constant 0.9 for the sake of simplicity. The
number of gradient descent steps to be performed is chosen
based on the Tensorboard plots in Figure 11 depicting the
progression of accuracy, sensitivity, specificity, precision, F1
score, and loss on train and validation sets over 5000 iterations.
The graphs illustrate how all metrics keep improving at a
high rate until 4500 iterations, after which the rate of change
decreases. The pattern is more visible on the plots for the
train set, as they are more stable. Thus, 4500 is chosen as the
number of iterations.

Training the model without DP, we get an accuracy of
85.35% on the test set. Information about the other metrics
can be found in Table IV.

We proceed to add differential privacy to the model. We
estimate the local L2 sensitivity for the lack of computational
power, calculating it on randomly chosen 2000 entries of the
dataset, and get the estimate of the sensitivity as 5.6.

Next, we implement functions for clipping the gradients
above the defined threshold and for noise addition, which
depends on epsilon, delta, and sensitivity. The clipping thresh-
old is set to 0.9, considering the range of the L2 norms
of theta during the training process, which can be observed
by uncommenting the print statement in the definition of the
logistic regression function without DP. Finally, we implement
a function for training the logistic regression with DP that
initializes theta at the 0 vectors and applies gradient clipping
and noise addition as described in Algorithm 1 on every step
of the gradient descent. The number of gradient descent steps
is explicitly given as a hyperparameter, the value of which,
along with the values of other hyperparameters that are also
present in the function of logistic regression without DP, are set
equal to the ones selected for the training of logistic regression
without DP. In this way, we are able to compare the two
algorithms.

To choose optimal values for the hyperparameters epsilon
and delta, we experiment with several pairs and track the
progression of the accuracy on the train set over the number
of iterations.

The Figure 12 suggests that the epsilon-delta pairs of (2,
0.9), (0.9, 0.1), and (0.1, 0.1) result in the highest accuracy on
the train set. We plot them on Figure 13 for a more thorough
understanding of their performance, which suggests selecting
the pair (2, 0.9) for further consideration.

The output of the training of the logistic regression with
DP includes adding random noise. Thus, the output varies
with every training, even though the hyperparameters and the
initialization of theta are fixed. A larger variance of the noise
results in more varied output parameters. To take this variation
of outputs into account while examining the performance of
the algorithm, we train it 10 times and record the summary
statistics of the performance metrics on train and validation
sets. The results can be found in Table II.

(a) Train and validation accuracy.

(b) Train and validation loss.

(c) Train and validation sensitivity (recall).

(d) Train and validation specificity.

(e) Train and validation precision.

(f) Train and validation F1 score.

Fig. 11: Tensorboard train and validation metrics monitoring
over 5000 iterations (without DP Logistic Regression model).



Fig. 12: Training accuracy results with different epsilon and
delta values.

Fig. 13: Training accuracy results with different epsilon and
delta values.

TABLE II: DP SGD, Performance metrics on train and vali-
dation datasets

Train Validation
Accuracy Mean 0.7154 0.7189

Min 0.6911 0.6947
Max 0.7579 0.7583

Sensitivity Mean 0.4904 0.4946
Min 0.3764 0.3782
Max 0.6503 0.6562

Specificity Mean 0.7903 0.7913
Min 0.7318 0.7362
Max 0.8467 0.8417

Precision Mean 0.4391 0.4348
Min 0.3934 0.3907
Max 0.5158 0.5046

BCE loss Mean 9.8303 9.7074
Min 8.3635 8.3496
Max 10.6691 10.5439

We trained the model once again to fix the output theta. The
logistic regression with DP obtains an accuracy of 72.09% on
the test set. Information about the remaining metrics can be
found in Table IV.

Having trained a logistic regression with DP, we implement
one more algorithm, which was our variation of DG SGD.
The motivation to develop a variation of DP SGD came
from our observation of decreasing norms during the training
process of the logistic regression without DP. While DP
SGD suggests having a constant gradient clipping threshold,
which, in case of decreasing gradients, results in clipping the
gradients of the first steps of the gradient descent and keeping
the gradients that appear on the later steps unchanged, we
experiment with an adjustable clipping threshold that would
allow the gradients to be clipped regardless of in which step
of the gradient descent they emerge. Specifically, starting the
4th step of the gradient descent, we scale the current gradient,
treating the maximum norm of the previous 3 gradients as a
threshold. The algorithm is presented below.

Algorithm 2: (Differentially private SGD our imple-
mentation) (Number of iterations N , loss function LD(w),
learning rate r, empty list of gradient norms p, )

1) Initialize θ as zero-vector of size of columns of X train
2) for i in N do
3) gi = ∇Li(wt)
4) p.append(||g||2)
5) if N > 2
6) Remove first element of p
7) threshold = max(p)[:-1]
8) if g > threshold
9) g = g∗ threshold /||g||2

10) g = g +N
(
0,

2 log( 1.25
δ )·(∆f)2

ε2

)
11) θ = θ − r ∗ g
12) Return θ and accumulated (ϵ, δ)

The model is trained 10 times to capture the variability of
the performance metrics. The results of the train and validation
sets are shown in Table III.

TABLE III: DP SGD adaptive clipping, performance metrics
on train and validation datasets

Train Validation
Accuracy Mean 0.7004 0.7065

Min 0.5774 0.5786
Max 0.7370 0.7409

Sensitivity Mean 0.4233 0.4378
Min 0.2667 0.2725
Max 0.6344 0.6562

Specificity Mean 0.7926 0.7933
Min 0.6612 0.6576
Max 0.8516 0.8563

Precision Mean 0.4076 0.4100
Min 0.2422 0.2392
Max 0.4694 0.4644

BCE loss Mean 10.3480 10.1361
Min 9.0826 8.9503
Max 14.5961 14.5558



To fix an output theta, we train the algorithm once again and
get an accuracy of 76.01% on the test set, while the values of
the other metrics can be found in IV.

TABLE IV: Performance metrics on test set

No DP DP SGD DP adaptive clipping
Accuracy 0.8535 0.7209 0.7601
Sensitivity 0.5982 0.5152 0.4545
Specificity 0.9355 0.7871 0.8584
Precision 0.7489 0.4375 0.5078
F1 score 0.6651 0.4731 0.4797
BCE loss 5.0614 9.6391 8.2846

As the tables suggest, the performance metrics are rather
similar when training the logistic regression with DP, whether
with or without adaptive clipping.

Lastly, we utilized the diffprivlib library to run a logistic
regression with and without DP. Without DP, the accuracy
is 86.08%. Implementing logistic regression with DP, we set
the epsilon and delta to 2 and 0.9, respectively, to be able
to compare it with the results of previous algorithms. The
library uses an algorithm that is more complex than DP SGD
and has more hyperparameters, which we will not discuss in
this paper. However, as our aim is to compare the library
with our implementations, we did not specify any additional
parameters, allowing them to be set to their default values. As
a result, we got an accuracy of 82.09%.

Fig. 14: Comparison of training accuracy between models.

D. Federated Learning with Differential Privacy using Sup-
port Vector Machines

After implementing different scenarios for the binary clas-
sification for our chosen dataset, including neural network and
logistic regression with DP and without DP, we also implement
the federated learning (FL) model with DP. The goal of imple-
menting the FL model with DP is to allow multiple users to
train a differentially private model collaboratively. We choose
the famous Support Vector Machines (SVM) model to solve
the binary classification task. SVM is a supervised machine
learning algorithm. The main task that the algorithm solves is

to find the hyperplane that best separates the data points of
different classes. SVM tries to maximize the margin, which
is the region between the support vectors, to differentiate
between the classes better. SVM also includes a regularization
term that helps avoid overfitting by balancing the tradeoff
between maximizing the margin and minimizing classification
mistakes [35]. Figure 15 illustrates the SVM model.

Fig. 15: Support Vector Machines. [35].

The implementation includes functions that load the data,
preprocess it, if necessary, and calculate the SVM model’s
gradient, loss, and accuracy for model performance validation.
Besides the general functions for the training process, we defin
the functions of gradient clipping and noise adding to apply
differential privacy while training.

Our training process for the FL model with DP includes the
following main steps:

• First step is loading the Adult dataset and transforming
the boolean label column into 1 and −1 for the SVM
model.

• Next, we define 50 clients, which are the individual users
or devices that participate in the training process. We fix
the number of clients selected for each iteration to be
equal to the number of overall clients so that each training
round includes updates from all the clients.

• During each iteration, the dataset is divided into multiple
clients, so that each client can train the global model
locally. The local training applies either mini-batch SGD
or full-batch SGD, depending on the given batch size.

• To ensure that each local client’s update remains differ-
entially private, we clip gradients of the SVM model
and perturb them with Gaussian noise. These steps are
similar to the DP-SGD algorithm explained in Section
III-F. The only difference is that the added noise and
clipping threshold are adjusted based on the amount of
processed data and the number of clients to be applicable
to the FL model.



• After applying DP to all local solutions, we aggregate
them into the global solution. The aggregated solution
is calculated by averaging the local solutions. Thus, the
global solution is computed at the end of each epoch,
which is the updated model parameters we received from
all participating clients. The global solution becomes the
updated model weights for the next training iteration.

• Similar steps are repeated several times during each
epoch, following the goal of having a more robust model.
As real-world datasets include noise and variability, it is
always better to run multiple experiments to see how the
model performs during different iterations with different
subsets of data. This ensures the model results are not
random and are stable throughout the training process.

• The accuracy and loss metrics are calculated for training
and test datasets to monitor the model performance during
the training process.

Our implemented FL model with DP used similar parameter
values of data privacy, clipping threshold, and delta as in NN
manual implementation explained in VI-B. The model results
in an accuracy of 74.94%, which is quite close to the accuracy
of the with DP manual implementation’s model.

E. Membership Inference Attack

To implement an MIA attack, we first delete some rows
of the dataset to make the target column balanced, which
becomes more important given the dataset will be further
divided into several parts. We drop the column native-country
for the same reason. Then, we proceed to split the dataset. 20%
of the dataset is allocated for training the target model and is
assigned as X target in and y target in, 10% of the dataset is
used as a validation set for the target model, which is stored
as X target val and y target val, 20% is set aside to be used
in the testing the attack model, as datapoint that have not been
part of the target model. They are referred to as X target out
and y target out. The rest of the dataset is used for the shadow
models. This section is divided into 4 equal parts for training
4 shadow models, while each of them is divided into 2 equal
parts, when one part will be used to train the model, while
the other part will be used in the training process of the attack
model, as data points that have not been part of the training
set. For the i’th shadow model, the respective datasets are
named X shadow in i, y shadow in i, X shadow out i, and
y shadow out i.

We define a model that trains a logistic regression without
DP with the same architecture and hyperparameters as in
the notebook for logistic regression. X target in, y target in
are used for training, X target val, y target val are used for
validation, while X target out and y target out are used as
a test set. This method does not prohibit us from using
X target out and y target out in the testing process of the
attack model as data points that have not been part of the
training process, as they are only used in the testing process
of the target model and do not affect the learned parameters.

We go on to define and train a logistic regression model
with DP with the same structure and hyperparameters as in

the notebook for the logistic regression. The model is trained
and tested on the same train, validation, and test datasets as
the one with DP.

For the next step, we implement 4 neural networks as
shadow models. Although the shadow models could have any
architecture that performs the same task as the target model,
we chose NNs, for their flexibility. The shadow models vary
in the number of layers, the number of nodes in them, the
activation functions, the optimizers, and the number of epochs.

Lastly, we define a function for the attack model, which is
a small NN, similar to the shadow models. It uses shadow
models to create a training set, as described in the section
Threat Scenarios and Possible Attacks. Similarly, the informa-
tion from the 2 target models, with and without DP, is used to
create the test set of the attack model. The goal is to determine
whether the attack model performs differently on the target
model, depending on whether DP has been employed in it.

Prior to implementing the attack model on the target models,
we tested it on the data that it had been trained on, which
resulted in low-performance metrics. From here, we could
conclude that the attack model did not learn. We did not
proceed to test the attack model on the target models, as the
results would more likely be based on random chance than
logical inference.

The performance metrics of the target, shadow, and attack
models can be found in the notebook called Membership
Inference Attack.

The time constraints prevented us from further refining
the code for MIA. We plan to address it in future work.
Specifically, we plan to do more research on different MIA ap-
proaches and increase the performance metrics on the shadow
models.

VII. CONCLUSIONS

In the scope of this project, we implemented a differentially
private logistic regression in three ways. Firstly, we applied
the DP SGD algorithm, then we created our modification of
it to introduce adaptive clipping, and lastly, we utilized the
diffprivlib library for training a differentially private logistic
regression. Additionally, we implemented a neural network
and added DP to it in two ways - manually, using the DP
SGD algorithm, and with the help of the Opacus library. We
proceeded to implement a membership inference attack model,
which incorporated training 2 target models - with and without
DP, 4 shadow NNs, and the attack model. Lastly, we manually
implemented federated learning with DP on an SVM model.

In our future work, we plan to conduct further research on
the attack methods and refine the current architecture.
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