
Deciphering Patterns in High-Profile GitHub Open-Source Projects

Authors: Inna Krmoyan and Gor Mkrtchyan

Major: BS in Data Science

Supervisor: Arman Asryan

Date: 09.05.24



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Abstract

This capstone project, "Deciphering Patterns in High-Profile GitHub Open Source

Projects", aims to discover hidden underlying patterns among popular repositories that contribute

to their success. Those repositories that are included in our study are open-source projects taken

from GitHub. GitHub is a very popular platform for version control and collaborative

development of projects, that provides a diverse set of repositories. As it is a very well-known

and popular platform for software developers, it is crucial to know what features contribute to the

popularity of a repository. This study attempts to discover and explore patterns within the

repositories by conducting a thorough data analysis followed by machine learning techniques in

order to provide meaningful insights into the features that influence the popularity of the

projects, including various variables such as the programming language, community

engagement, etc.

Introduction

This project is important to the software development community as the core idea lies in

the potential to discover ways to improve repository development in GitHub and help guide the

developers who want to have a repository that becomes successful and useful to many. It aims to

identify possible connections and correlations between the attributes of the repositories that are

available on GitHub. By using our domain knowledge one can assume that the main components



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

of a repository that makes it spark are Stargazers, Forks, Downloads, and so on. We aim to test

our intuition and see whether the main variables that contribute to the success are the ones that

immediately come to mind.

Ultimately, this capstone project aspires to contribute to the broader understanding of

successful software development on GitHub by providing developers with useful insights that

can guide and help them throughout their software development journey towards creating

repositories/projects that not only meet their own immediate goals but also can also inspire the

GitHub community. The outcomes of this project and research have the potential to create best

practices in the software development community guide them to become better, and foster a

collaborative ecosystem on the GitHub platform.

During this capstone project, there were several crucial stages that the work went

through. As the goal of our project is to determine underlying patterns that contribute to the

success of the repositories, there are three main stages that the work was divided into. The first

stage is the data retrieval process, followed by data analysis procedures and machine learning

algorithms, and the last stage is for Power Bi analysis, the creation of a user-friendly and

informative dashboard for easy usage and access. There are bridges that connect the crucial

stages so that the processes are automated as much as possible. Those bridges are pipelines that

start from the database collection, connect to the data analysis and machine learning part, and

flow to the dashboard. It was very important to create a smooth data transfer and analysis

process. In the following chapters, we will discuss each stage and process more thoroughly.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Problem Statement

The problem that our capstone project aims to resolve is the need to enhance repository

development practices on GitHub platform in order to help developers understand what helps

repositories become successful. Even though there are many repositories present in GitHub there

is no such indicator of success. Intuitively it can be thought that Stargazers, Forks, Subscribers,

and other such features are the ones who contribute to the spiking of the repository. That is a

dilemma for the software community that no one can define how the repositories go viral,

become successful, and be used by many.

Literature Review

1. “Understanding the Factors that Impact the Popularity of GitHub Repositories” By

Hudson Borges, Andre Hora, Marco Tulio Valente.

The hypothesis of the paper titled "The Impact of Social Features on GitHub

Repositories" revolves around the idea that social features such as interactions between

users significantly influence the success and popularity of GitHub repositories.

Specifically, the hypothesis states that repositories with higher levels of social

engagement, as indicated by metrics like stars, forks, and comments, are more likely to

attract attention, contributions, and usage from the GitHub community. As this paper

explores the influence of social features such as stars, forks, and comments on the success



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

of the GitHub repositories, it inspired and helped us to finalize our decision on using the

available features in our dataset such as stargazers, forks, subscribers, etc. Whereas our

project is more focused on the attributes mentioned before this paper focuses on the

impact of social interactions and community engagement on the repository’s popularity.

“We identified four patterns of popularity growth, which were derived after

clustering the time series that describe the number of stars of the systems in our dataset.

We found that slow growth is the most common pattern (65.7%) and that very few

systems present viral behavior (1.6%). Slow growth is more common in case of

overpopulated application domains (as web libraries and frameworks) and for old

repositories.” (Hudson Borges, Andre Hora, Marco Tulio Valente, 2016, p. 10). We found

this result interesting and expectable from our analysis as well, even though it highly

depends on the data we have.

2. "A Comprehensive Study of Software Forks: Dates, Reasons and Outcomes" by

Robles et al. (2016)

This paper investigates software forks on GitHub. It examines temporal patterns,

reasons for forking, and outcomes of forked projects. Through statistical analysis and

classification methods, the paper identifies common reasons for forking like bug fixes,

and feature enhancements. It also explores factors associated with successful or

unsuccessful outcomes. It was interesting to see how machine learning algorithms were

used in such cases. This study helped us to be sure of the final choice of our model

selection, even though it highly depends on the performance of the models. They used



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

decision trees to analyze their data, which gave us the idea of trying a random forest

classifier on our analysis that actually yielded the best results out of all.

3. “Predicting the Popularity of GitHub Repositories” by Hudson Borges, Andre Hora,

Marco Tulio Valente

This project focuses on predicting the number of stars of GitHub repositories

using multiple linear regression, which helped with our model selection. As it is defined

in the paper “For example, GitHub users can show appreciation to projects by adding

stars to them. Therefore, the number of stars of a repository is a direct measure of its

popularity.” (Hudson Borges, Andre Hora, Marco Tulio Valente

,2016, p.1). Basically, stars serve as a measure of a repository's popularity, and accurate

predictions are valuable for both repository owners and clients seeking insights into

project performance in the competitive open-source development market. While seeking

for the right choice of the target variable this study was a catch to determine that. The

study demonstrates that the proposed models achieve accurate predictions, particularly

when trained with data from the last six months of star counts. This helped us understand

that this model will not be suitable for our case as the data that we have is very large and

the differences between the stars of the repositories are very random as the project

recommends specific models tailored to repositories with slow growth or fewer stars.

4. "Scoring Popularity in GitHub” by Abduljaleel Al-Rubaye, Gita Sukthankar



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

This is a study on popularity in GitHub that is focusing on the relationship

between forking, watching, and starring repositories as quantitative measures of

popularity. While we were thinking about how to define the target variable we even

though of incorporating of some formula or calculate weights to give to the features we

find useful. The paper proposes a weight-based popularity score (WTPS) derived from

the history of repository popularity indicators on GitHub. This score aims to provide a

comprehensive measure of a repository's popularity based on user interactions such as

forking, watching, and starring. While this is a great way to have a popularity score

measure, unfortunately, this helped us understand that we cannot do this unless we have

the right data to do so. The data used includes every update about the repository since the

day it was created. Therefore, it was possible to calculate the growth of the repository,

while in our case we do not have that kind of data.

Methodology

1. Exploratory Data Analysis (EDA):

● Used Python analysis techniques such as understanding the types of our features,

fixing the shape of the dataset, filtering some values to see what repositories

include those, etc.

● Used different kinds of visualizations to better grasp the data.

2. Time Series Analysis:

● For capturing trends and identifying patterns we used scatterplots incorporated

with different features.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

3. Feature Engineering:

● For feature engineering several columns were created: Repository_Age,

Updated_In_Days, Forks-to-Network_Ratio, and Issues-to-Forks_Ratio.

● Some variables were time-based so those were converted to datetime.

4. Supervised Learning Models:

● For supervised learning linear regression, gradient boosting, and random forest

regressor were used.

● These were selected based on the literature reviews and browsing the internet as

they suited our dataset the most.

5. Unsupervised Learning Models:

● For unsupervised learning we used K-Means, DBSCAN, Mean Shift Clustering,

and Gaussian Mixture models (GMM).

6. Software and Tools:

● The core language was Python, we used MySQL for databases, Power BI for

dashboard creation, and Database works with ELT.

Results



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Data Retrieval

The first stage was to collect the required data for our analysis. Since we were dealing

with a vast amount of data, it was crucial to find an efficient approach.

Initially, we attempted to retrieve data directly using the GitHub API. However, due to its

limitations in restricting large-scale data retrieval, we came up with an alternative approach.

Additionally, there were no applicable open-source datasets related to GitHub available on the

web. To overcome these difficulties, a Python script was developed to interact with the GitHub

API using a personal access token and ultimately extract detailed data related to users and

repositories as shown in Table 1 below.

Column Name Data Type Description

User_ID INTEGER Unique identifier for the user.

User_Node_ID STRING Node identifier for the user.

User_Avatar_URL STRING URL for the user's avatar image.

User_HTML_URL STRING URL for the user's profile page.

User_Type STRING Type of user (e.g., "User", "Organization").

User_Site_Admin BOOLEAN Indicates if the user is a site administrator.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

User_Name STRING Username of the user.

User_Company STRING Company affiliation of the user.

User_Blog STRING URL of the user's blog.

User_Location STRING Location information provided by the user.

User_Email STRING Email address of the user.

User_Bio STRING Biography or description provided by the user.

User_Twitter_Userna

me

STRING Twitter username of the user.

User_Public_Repos INTEGER Number of public repositories owned by the user.

User_Followers INTEGER Number of followers of the user.

User_Following INTEGER Number of users followed by the user.

User_Created_At TIMESTAMP Date and time when the user account was created.

User_Updated_At TIMESTAMP Date and time when the user account was last

updated.

ID INTEGER Unique identifier for the repository.

Node_ID STRING Node identifier for the repository.

Name STRING Name of the repository.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Full_Name STRING Full name of the repository.

Owner_ID INTEGER ID of the user or organization that owns the

repository.

HTML_URL STRING URL for the repository's HTML page.

Description STRING Description of the repository.

Fork BOOLEAN Indicates if the repository is a fork.

Created_At TIMESTAMP Date and time when the repository was created.

Updated_At TIMESTAMP Date and time when the repository was last updated.

Pushed_At TIMESTAMP Date and time of the last push to the repository.

Git_URL STRING URL for the repository's Git endpoint.

Homepage STRING URL of the repository's homepage.

Size INTEGER Size of the repository in kilobytes.

Stargazers_Count INTEGER Number of users who have starred the repository.

Language STRING Primary programming language used in the

repository.

Has_Issues BOOLEAN Indicates if the repository has open issues.

Has_Projects BOOLEAN Indicates if the repository has projects.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Has_Downloads BOOLEAN Indicates if the repository has downloads.

Has_Wiki BOOLEAN Indicates if the repository has a wiki.

Has_Pages BOOLEAN Indicates if the repository has GitHub Pages enabled.

Has_Discussions BOOLEAN Indicates if the repository has discussions enabled.

Forks_Count INTEGER Number of forks of the repository.

Archived BOOLEAN Indicates if the repository is archived.

Open_Issues_Count INTEGER Number of open issues in the repository.

License_Name STRING Name of the license under which the repository is

distributed.

License_SPDX_ID STRING SPDX identifier for the license.

License_URL STRING URL for the license information.

License_Node_ID STRING Node identifier for the license.

Is_Template BOOLEAN Indicates if the repository is a template.

Web_Commit_Signoff

_Required

BOOLEAN Indicates if web commits require sign-off.

Default_Branch STRING Default branch of the repository.

Network_Count INTEGER Number of forks of the repository in the network.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Subscribers_Count INTEGER Number of users subscribed to notifications for the

repository.

Ingestion_Date TIMESTAMP Date and time when the data was ingested or

imported into the system.

Table 1: Fetched Columns with Data Types and Description

Furthermore, to expand the dataset, another script was developed to extract followers and

followings of users already present in the dataset and saved into a TXT file. These usernames are

later used to discover and retrieve information on even more repositories, creating a process that

could potentially expand the dataset indefinitely.

Data Analysis

During the second stage, that is the data analysis section, the retrieved data was analyzed

through Python. In order to have a good understanding of what we are working with it is

important to know the datatypes of the variables, the size of the data, and column names that you

can find in the analysis file. Very essential part of an analysis is finding and identifying missing

values in the columns that will be used during the process of both data analysis and machine

learning.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Fig. 1. Boxplot of Numerical Columns

As one can deduce from Fig. 1 there are clear outliers in all of the columns. It is worth

mentioning that in some columns, comparably to other ones, there are more severe and

noticeable outliers that are vividly present. After checking those eye-catching data points it was

clear that those outliers are big projects for example the “Free Ebook Foundation” which has the

most stargazers and is a big ebook organization. Overall, in this case, all of the outliers were

meaningful and not just random noises in the data.

The next step here was the time series analysis. For this, we used the “Creation Date”

from the dataset in order to get to know the variables and overall data that we have better. The

aim of this was to get one step closer to understanding the possible trends that can be present in

the data.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Fig. 2. Time Series Scatter Plot of User Registrations Over Time.

Fig. 3. Time Series Scatter Plot of Repository Creations Over Time.

From fig. 2 we can imply that there has been a decline in the user registration. This can

be because of the fact that GitHub was founded in 2008 and at first there was a huge flow of

software developers that registered, as the years went by the user registrations went down



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

accordingly. From fig. 3 we can see some spikes in the repository creations, therefore if we want

to have an overall understanding of the user activity, then we should rely on Fig. 2 more and state

that the activity is stable.

Fig. 4. Time Series Scatter Plot of The Top Used Languages Over Time.

In order to understand the programming language trends, we can take a look at Fig. 4 and

deduce that the most used programming language is javascript which doesn’t lose its popularity

followed by Python. This was further analyzed in the Power BI Dashboard.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Machine Learning

During the Machine Learning stage we have separated the necessary variables for our

machine learning models, which are numerical columns: 'User Followers', 'User Following',

'Size', 'Stargazers Count', 'Forks Count', 'Open Issues Count', 'Subscribers Count',

'Repository Age', 'Updated In Days'. Additionally, there were variables with boolean values

that were encoded: 'User Type', 'Fork', 'Has Issues', 'Has Projects', 'Has Downloads', 'Has

Wiki', 'Has Pages', 'Has Discussions', 'Archived'.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Fig. 5. Correlation Matrix for the Machine Learning variables.

From the above Fig. 5, we can say that there are no significant correlations present, the

most noticeable one is between “Has Wiki_True” and “Has Projects_True”. Therefore we could

not rely much on the correlations.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

For this project, as we could approach it from both a supervised learning perspective and

not supervised one, we decided to try both and see what patterns we could find. The supervised

learning consisted of taking “Stargazers Count” as the target variable for the prediction and

classification. The choice lies within the fact that the stargazers are the starred favorites of users,

which implies that if a repository has many stargazers therefore it is a crowd favorite. Starting off

with Linear Regression we obtained the result of R-squared: 0.817650837896611, this

indicates that about 81% of the target variable, that is in our case the “Stargazers Count”, can be

explained by the independent variables in the regression model. In order to understand each

variable’s contribution to the model, we extracted how the regression model gave feature

importance to the independent variables.

Fig. 6. Feature Importances of Linear Regression Model.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

The distribution of importances looks intuitive and insightful (fig. 6), by using these we

can say that if the repository has discussions, forks, issues, pages, downloads, etc. that shows a

popularity pattern. The higher these values the more popular the repository gets. The first pattern

is found!

As it is crucial to try different models before making conclusions, we continued with

Gradient Boosting, which gave the result R-squared: 0.8710061090160807. This shows that

about 87% of the target variable, that is in our case is again the “Stargazers Count”, can be

explained by the independent variables in the gradient boosting model.

Fig. 7. Feature Importances of Gradient Boosting Model.

This feature importance distribution (fig. 7) is quite different from the previous one. The

importance measures that are given to the variables did not meet our expectations as there are

many columns that by judging our domain knowledge should have been higher ranked.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

For the last model we used Random Forest Regressor, whereas previously for the two

models, we again used as target the “Stargazer Count”. From this model, we obtained

R-squared (R^2): 0.8834127055318827, which indicates that the independent variables explain

the target with about 88% accuracy.

Fig. 8. Feature Importances of Random Forest Model.

This model had promising results, as it both was the best-performing one amongst the

three and the feature importance distribution (fig. 8) is quite intuitive and meets our domain

knowledge’s expectations. Therefore, we moved on with prediction and actual value comparison.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Fig. 9. Random Forest’s Prediction comparison.

The test result was very impressive therefore we moved on with the predictions over the

dataset. The result we obtained for that is R-squared (R^2): 0.9545406562830735. This needed

a check for overfitting or underfitting. We evaluated the performance of our model which helps

in understanding how well the model generalizes to unseen data (test set) and whether it is

overfitting or underfitting (by comparing performance on training and test sets).

Fig. 10. Performance Evaluation Metrics.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Overall, while there are signs of overfitting (lower performance on the test set compared

to the training set), the magnitude of the difference between the training and test metrics is not

extreme. As there is some degree of overfitting present it would be good to further investigate

and tune the model to reduce overfitting. After conducting cross-validation the results that we

obtained areMean Train R-squared (R^2): 0.9776625589347626 andMean Test R-squared

(R^2): 0.8834127055318827. These results suggest that the model is overfitting to the training

data and does not generalize well to unseen data. Even though the overfitting issue is still present

we can try to reduce overfitting by restricting the depth or complexity of individual trees and

limiting the number of features considered at each split. After interchanging the variables and the

depth of the trees to 8, we obtained a better result R-squared (R^2): 0.8273635791714308 and

R-squared (R^2): 0.9055433843025674, the overfitting reduced significantly.

The next step in the machine learning analysis is the unsupervised learning section. As in

our dataset, there is no certain column for a popularity indicator, the best thing to do here is to

conduct both supervised and unsupervised learning techniques. Before now, we used supervised

learning and chose the “Stargazers Count” as the target variable, but there is no certainty that the

chosen column is the perfect indicator for the success metric. As there is no certainty here, it is

useful to investigate the problem from different views. The unsupervised learning methods help

to detect clusters that can potentially have hidden patterns that tell you the story of a repository.

The first algorithm we tried was K-Means. The trickiest part of this was choosing the

optimal k for the algorithm. We conducted GridSearch for this which yielded the result of having

k set to 2. After identifying the clusters, the number of k clusters did not do the job well as the 2

clusters were very inefficient. The mean of the first cluster is 252.94 and for the second one is



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

1.15. This wasn’t a good-looking result of two clusters as there are many repositories that have

very high stargazers (e.g. 150.000+) which does not make sense to include in a cluster with a

mean value of 252. Therefore, we tried with k as 3,4,5, etc. The best outcome was k = 3 as it

provided clusters that can be categorized as High, Medium, and Low. The mean values that we

got accordingly are 71988.018, 186.796554, and 1.217382.

Table 2. K-Means Descriptive Results K = 2.

Table 3. K-Means Descriptive Results K = 3.

The second clustering algorithm we tried was DBSCAN. Which did not perform well on

the data, even after modifying the metrics. We had 4 clusters and the mean values of the



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Stargazers for each were 137.5, 0, 0, 0.

Table 4. DBSCAN Descriptive Results.

TheMean Shifting Clustering probably performed the worst on our data as it identified

too many clusters from which it was impossible to derive any information or find any underlying

pattern that contributes to any of those clusters.

The Gaussian Mixture Models Clustering gave interesting results as it identified 5

clusters but unlike DBSCAN the results of this algorithm made more sense in terms of the

stargazer mean values. For the first cluster, the mean was 3.2, for the second one 0.28, third

5923.7, fourth 1215.95, fifth 0.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Table 5. GMM Descriptive Results.

Eventually, we decided to move on with the K-Means clustering with k = 3.

Dashboard

To make the obtained results more user-friendly and practical for the software

development community the last stage of the project was creating a dashboard. It consists of 6

pages (here excluding the HOME page):

Fig. 11. Repository Analysis Dashboard Section.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Fig. 12. User Analysis Dashboard Section.

Fig. 13. Language Analysis Dashboard Section.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Fig. 14. Predictive Analysis Dashboard Section.

Fig. 15. Cluster Analysis Dashboard Section.

Pipelines



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Following the data retrieval phase, we created an ELT (Extract, Load, Transform)

pipeline to make data processing and analysis more efficient. This pipeline made the transfer of

data from its source all the way to the analysis phase and later to the visualization phase easier

and smoother, ensuring reliability throughout the process.

The initial step in the ELT process involved pushing the fetched data CSV file, which we

gained from the GitHub API to Google Drive. Using Google Drive allowed us to store all the

data in one place before moving it for processing. From Google Drive, the data was then

migrated to BigQuery within the Google Cloud Platform (GCP). A designated table named

Staging_Raw within BigQuery served as the primary repository for the incoming data.

To organize and structure the data for analysis, a Project and a Dataset were created

within BigQuery. Subsequently, SQL creation files were developed to define the schema and

structure of the data tables. These SQL creation files were executed using Python scripts,

resulting in the creation of Dimension (Dim) tables such as Dim_Users, Dim_Repositories,

Dim_Date and Dim_License, and a Fact table Fact_Metrics.

To ensure data accuracy and relevance, update scripts were devised to periodically refresh

the data within the BigQuery tables. Each update script targeted a specific table and was

executed in a predetermined order using Python scripts. This systematic approach enabled

efficient and timely updates to the data, maintaining its integrity and currency.

Following the data preparation phase, a view table was created to join several tables and

present the necessary columns required for subsequent data analysis. This view table served as a

simplified interface for accessing and querying the data, facilitating smoother analysis processes.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Upon establishing the structured dataset within BigQuery, Python scripts were utilized to

connect to the database and conduct data analysis and machine learning (ML) modeling. These

analyses included exploring patterns, correlations, and trends within the dataset to derive

meaningful insights.

Once the analysis was completed, the analyzed dataset was integrated back into the

BigQuery Database. Finally, Microsoft Power BI was employed to connect to the BigQuery

Database, enabling the creation of a dynamic dashboard to visualize and communicate the

findings effectively.

This pipeline ensured smooth data flow from start to finish, making it easier to analyze

and visualize the data, leading to better decisions and practical insights.

Fig. 16. Data Pipeline Architecture (ELT).

Conclusion



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

To conclude, we reached our goal and provided solutions to the problem statement

mentioned above. The final results that we obtained that can be accessible through the dashboard

were predicted Stargazers and derived clusters. The supervised learning section of our analysis

provided predictions with a 90%+ accuracy which is a good indicator. That shows that our target

variable that is Stargazers Count can be explained with the chosen features for the analysis that

were Subscribers Count, Forks Count, User Followers, Size, Repository Age, Open Issues Count,

Updated In Days, Has Projects_True, User Following, Has Discussions_True, Has Wiki_True,

Has Pages_True, User Type_User, Archived_True, Has, Issues_True, Has Downloads_True,

Fork_True. From the clustering analysis we could identify patterns that lead to the repository's

success. We could identify three clusters: High,Medium, and Low.

The key indicators for the High popularity cluster are:

- The repository does not have to have discussions for it to be popular, even though

compared to other clusters this one more or less had some repositories included that had

discussions.

- The repository has to have downloads because 90% of the high-popularity cluster had

downloads.

- The repository can have issues and yet still be successful. Most of the repositories

included have issues about 60%.

- The repository does not necessarily need to have projects to be successful. About 90% do

not have.

- For the repository to be considered High, it needs to be forked around 2000 times.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

- The stargazers of the repository need to fluctuate around 2000 as well.

- The high-popularity users need to have around 2400 followers.

The key indicators for theMedium popularity cluster are:

- The repository does not have to have discussions for it to be in the medium cluster at all

as 100% of the repositories in this cluster do not have discussions.

- The repository has to have downloads because more than 90% of the medium popularity

cluster had downloads.

- The repositories in this cluster mostly have issues. More than 90%.

- The repositories here all have projects.

- For the repository to be considered Medium, it needs to be forked around 38 times.

- The stargazers of the repository need to fluctuate around 187 as well.

- The medium-popularity users need to have 11 followers.

The key indicators for the Low popularity cluster are:

- The repository does not have to have discussions at all as 100% of the repositories in this

cluster do not have discussions.

- The repository can have downloads.

- The repositories in this cluster mostly if not always have issues. Very close to 100%.

- The repositories here all have projects.

- For the repository to be considered Low, it needs to be forked once..

- The stargazers of the repository need to fluctuate around 2 as well.

- The low-popularity users need to have 2 followers.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

Limitations & Future Research

● Limited data volume: (around 230,000 data points) due to challenges with GitHub API

restrictions (as the famous quote goes "more data leads to more accurate results").

● Lack of External Validation: The analysis might lack validation against external

benchmarks or ground truth, affecting the interpretation and generalizability of findings.

● Slow Processing in Jupyter Notebook and PowerBI: Large data size led to slow

processing times and difficulty in handling visualizations in PowerBI and running

machine learning models in Jupyter Notebook.

● Difficulty in Creating Visuals in PowerBI: Visualizations in PowerBI were prone to

memory capacity errors.

● Algorithm Compatibility Issues: Certain machine learning algorithms failed to execute

properly. Compatibility issues with the dataset or computational environment hindered

algorithm performance.

● Possible future migration to AWS: Utilizing Amazon Web Services (AWS) instead of

Google Cloud Platform (GCP) for data processing and analysis tasks. Leveraging AWS's

scalable computing resources and services to overcome performance limitations.



“Deciphering Patterns in High-Profile GitHub Open-Source Projects”

● Exploring additional metrics: Future research could explore additional metrics, such as

developer activity or project documentation

● Utilizing TF-IDF in description and bio columns: Employing Term Frequency-Inverse

Document Frequency (TF-IDF) analysis on description and bio columns in the future

could reveal significant keywords or terms that contribute to repository success.

References

1. Al-Rubaye, A., & Sukthankar, G. (2020). Scoring Popularity in GitHub.

https://doi.org/10.1109/csci51800.2020.00044

2. Blincoe, K., Sheoran, J., Goggins, S. P., Petakovic, E., & Damian, D. (2016).

Understanding the popular users: Following, affiliation influence and leadership on

GitHub. Information and Software Technology, 70, 30–39.

https://doi.org/10.1016/j.infsof.2015.10.002

3. Borges, H., Hora, A., & Marco Tulio Valente. (2013). Predicting the Popularity of

GitHub Repositories. In https://arxiv.org/pdf/1607.04342.pdf.

4. Borges, H., Hora, A., & Marco Tulio Valente. (2016). Understanding the Factors that

Impact the Popularity of GitHub Repositories. In https://arxiv.org/pdf/1606.04984.pdf.

5. Jamali, S., & Rangwala, H. (2009). Digging Digg: Comment Mining, Popularity

Prediction, and Social Network Analysis. In

https://cs.gmu.edu/media/techreports/GMU-CS-TR-2009-7.pdf.

https://doi.org/10.1109/csci51800.2020.00044
https://doi.org/10.1016/j.infsof.2015.10.002
https://arxiv.org/pdf/1607.04342.pdf
https://arxiv.org/pdf/1606.04984.pdf
https://cs.gmu.edu/media/techreports/GMU-CS-TR-2009-7.pdf

