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Abstract—Living organisms harbor diverse bacterial commu-
nities, collectively termed as microbiome, residing in areas such
as the gut and skin. Alterations in microbiome composition in hu-
man body are linked to numerous disorders, from inflammatory
bowel disease to colorectal cancer. The analysis of microbiome
datasets poorly deals with the dynamic nature of the com-
munities. Approaches that take the microbial interactions into
accounts are needed. This paper aims to integrate graph theory
and single cell transcriptomics methodologies into microbiome
data analysis which will untangle the complex web of interactions
within microbial communities and between these communities
and their hosts.

Index Terms—microbial communities, subgraph analysis, mi-
crobiome velocity, pseudotime analysis, mathematical modeling

I. INTRODUCTION

A. Microbiome communities: complex networks of microor-
ganisms

Hundreds of thousands of bacteria normally inhabit living
organisms, particularly the human body - the gut, skin, and
reproductive organs [1]. Bacterial communities provide nu-
merous advantages to the host, by performing various physi-
ological functions such as reinforcing gut health, molding the
intestinal lining, extracting energy, defending against harmful
pathogens, and controlling the host’s immune system [2].
Dynamic changes in the composition of bacterial commu-
nities, or the microbiome have been shown to be linked
to a diverse array of disorders, including obesity, diabetes,
cardiovascular disorders, cancer, hypertension, and IBDs [3].
Moreover, besides microbiome-host interactions a wide range
of interactions take place among the bacteria. The compe-
tition and cooperation between them play a crucial role in
community composition formation and functioning [4]. Within
these communities, bacteria compete with their neighbors for
nutrients, including carbon, nitrogen, metals, phosphate, as
well as for space where these nutrients are abundant. Microbial
communities also engage in cooperation to aid in resource
digestion, combat antibiotics, or manage other environmental
stresses.

Methodologies that assess the changes of microbiome com-
position affected by environmental perturbations mainly focus
on the bacteria separately, ignoring the interactions between
them [5]. However, numerous diseases are associated with the
network of bacteria [6]. Therefore, the independent analysis
of the bacterial abundance may not be enough.

B. Approaches to study dynamics of microbiome communities

Numerous statistical and computational methods are used
for analyzing microbiome data. The downstream analysis of
these datasets may have different components mainly con-
sisting of the exploration of the change of a single feature
in different conditions [7]. Differential abundance analysis
is done for identification of the taxa that show significant
difference between two or more conditions [8]. Alpha diversity
metrics such as Shannon and Simpson indices summarize the
structure of a community [9]. Identification of keystone species
is often employed to provide insights into the potential drivers
of change within the system. Time series clustering done
at either the participant level or the feature level identifies
naturally occurring clusters focusing on recognizing patterns
that evolve over time.

Besides single features, the interactions between features are
of great importance. The methods detect only indirect effects
which are propagated through the network of interactions. In
the presence of an external effect on one feature, in later
timepoints an effect will be visible on the features interacting
with it. This effect may falsely be assumed to be associated
with the disease if holistic approaches are not used to differ-
entiate direct and indirect effects. To assess the interactions
co-occurrence networks are created [10]. The networks are
produced by applying an association metric or correlation
coefficient in a pair-wise manner. However, the methods do not
take into account neither the influence of external perturbations
and the longitudinal nature of some datasets, nor the dynamics
of the communities. There is a need for further exploration of
microbial datasets, and techniques inspired from graph theory
and single cell data analysis can be helpful with right choices
of meaningful equivalents of the concepts.

C. Lessons from graph theory

Graph theory offers multiple methods for the analysis of its
components. An essential problem is to find the core subgraph
in a graph responsible for most of the weight in it. The
Maximum Weight Connected Subgraph Problem (MWCS) is
the problem of finding a connected subgraph with maximum
total weight in a node-weighted graph [11]. It is an NP-
hard problem and its solution is usually approximated by
transforming the given instance to the Prize-Collecting Steiner
Tree Problem or by using an integer programming formulation.



(a) Number of identified genes in single cell. (b) Number of identified species in microbiome.

(c) Velocity values in single cell. (d) Velocity or log change values in microbiome.

(e) Change values in microbiome (relative). (f) Log change values in microbiome (relative).

Fig. 1: Translatability check from single cell transcriptomics to microbiome.

Markov chains are mathematical models that represent
systems undergoing transitions from one state to another with
certain probabilities [12]. These states can be viewed as nodes
in a graph, and the probabilities of transitioning from one
state to another are represented as directed edges between
these nodes. Markov chains are helpful for construction of
transitions from one state of the biological system to another.

Random walks are stochastic processes where a path is
formed by taking successive steps in random directions [13]. In
the context of graph theory, a random walk can be visualized
on a graph where each vertex represents a state and edges
represent the possible steps from one vertex to another. Each
move from one vertex to a connected vertex is chosen at ran-
dom, often with equal probability, making the graph a useful
tool for analyzing the properties and behaviors of random

walks, such as convergence and cover times. Numerically, the
convergence can show the probability of one biological state
landing in another one in the future.

D. Lessons from single-cell transcriptomics analysis

Human body is a highly complex system composed of
approximately 3.72×1013 cells of various types [14]. Although
almost all cells contain the same set of genetic material, the
transcriptomic information differs and reflects the heterogene-
ity of the cells by identifying the unique activity of a specific
set of genes. Profiling the gene expression activity in cells
of an organism is considered as one of the most authentic
approaches to examine cell identity, state, function and re-
sponse. Single-cell RNA sequencing enables the investigation
of millions of cells in a single study to distinguish each cell at
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Fig. 2: Subgraph analysis on honeybee gut microbiome datasets.

the transcriptome level [15]. They give matrices where rows
are genes and columns are cells with gene expression values,
showing how active a gene in a cell is.

To analyze single cell datasets numerous bioinformatics
techniques have been created [16]. Dimensionality reduction
techniques help to reduce the high dimensional gene expres-
sion data and to visualize the cells on a two dimensional space.
Later, the cells are arranged according to gene expression
similarities and trajectories are built. Pseudotime analysis
is a time-series examination of the data and can be used
to infer the trajectory of the cells at the single-cell level
which is expected to discover cell types and cryptic states
[17]. Pseudotime analysis methods computationally order the
cells along a trajectory topology and give a broader idea
about the underlying biological process. Monocle is one of
broadly used tools for pseudotime analysis [18]. It learns an
explicit principal graph to describe the gene expression data
and rebuilds single-cell trajectories by embedding a reversed
graph to improve the robustness and accuracy of predicted
trajectories. Another algorithm is the diffusion pseudotime
(DPT) which uses random-walk-based distances in diffusion
map space [19].

Gene expression values assist in RNA velocity estimation
which indicates where each cell or cell cluster will move on
the derived two dimensional space and predicts the future state
of a cell [20]. The tool CellRank integrates this direction-
ality information layer with the gene expression values in a
weighted manner, and derives a transition probability matrix

that shows the probabilities of transition from one cell state
to another [21]. Using Markov Chain modeling it calculates
fate probabilities of cells towards terminal states of the cellular
trajectory.

E. Microbiome communities and single cells: feature space
comparison

Microbial communities, although different from single cells
in nature, behave similarly from the data distribution per-
spective. Both single cell RNA-seq (scRNA-seq) and metage-
nomics datasets are described by sparsity of feature matrices
that arises from insufficient sampling of RNA in single cells
or DNA in microbiome communities, particularly leading to
missing values for features having a low abundance. The spar-
sity, however, is more pronounced in single cell datasets than
in microbiome datasets. Therefore, data imputation applied in
scRNA-seq datasets may not be as relevant as in the case of
metagenomics datasets. Although both types of datasets are
compositional in nature they have a key difference. While in
single cell datasets the total number of expression values is
more or less the same from one cell to the next, it is not the
case in microbiome. Taking into account the differences, the
translation from one dataset to another is possible.

By choosing the analogous concepts, the tools used in single
cell transcriptomics can be adapted for microbial communities.
Each sample or microbial community is equivalent to a cell
with the taxonomic abundance derived from 16S amplicon or
WGS datasets taken as an analogue of the gene expression



value. The transitions between these entities represent com-
munity composition shifts along a real or pseudotime axis.
In microbiome, the velocity value equivalent is the growth
rate either derived from relative read coverage comparing sites
closer to the origin of replication to the terminus or predicted
from networks of interactions between species. An alternative
for the growth rate is the peak to through ratio (PTR) which
is a metric calculated based on DNA sequencing coverage
differences between genomic regions closer or further from
the replication origin [22]. The PTR approach serves as an
empirical, model-independent measure of individual species
behavior neglecting the growth-promoting or inhibiting inter-
actions among different species.

II. AIMS AND OBJECTIVES

The aim of this work is to transform our approach to ana-
lyzing microbiome datasets. Utilizing cross-sectional datasets,
we aim to map the landscape of pseudotemporal dynamics
and identify potential attractor states within microbiome com-
munities. The goal is to arrange the microbiome communities
derived from the cross-sectional studies along a pseudotem-
poral axis, reflecting the gradual shifts that potentially link
one individual’s microbiome to another. We aim to identify
the microbiome community shifts using microbiome velocities
and to predict the future state of a community. Through
network analysis we aim to identify the subgroups of species
that are most changed from external perturbation such as
a treatment. After the validation on simulated datasets the
methodologies will be used to infer important knowledge from
real microbiome datasets.

III. METHODS

A. Co-occurrence network construction

The relationships of bacteria sharing the same environ-
ment have been characterized by generating co-occurrence
networks. These networks are a proxy for interactions between
the bacteria as interaction causes co-occurrence. The aim
is to combine the co-occurrence information of the bacteria
from different samples and to construct a uniform interaction
network which later can be used to derive for each sample
subsets of bacteria that has the biggest influence in it.

To construct the uniform co-occurrence network of a study,
we calculated the Pearson correlation coefficients between all
pairs of bacteria and derived p-adjusted values with Bon-
ferroni multiple testing correction for each sample in the
study separately. We filtered out the pairs that had correlation
coefficient lower than 0.6 or p-adjusted value larger than 0.1
as these pairs of bacteria have either no or little interaction.
As a result, a co-occurrence network was constructed where
nodes are bacteria and edges show interaction between them.
To construct the underlying network for further analysis,
we merged the separate networks with overlapping edges
having mean correlation coefficient of the separate networks.
The resulting underlying network shows overall interactions
between bacteria independent of separate samples.

B. Maximum weight connected subgraph analysis

In order to find the subset of bacteria that has the biggest
influence or change, we did subgraph analysis for each sample
separately. We analyzed the dynamics using the co-occurrence
or interaction network constructed based on all samples and
the abundance values of the sample. Then, to see the difference
between untreated and treated samples log fold change values
were used. It is calculates as log At

Au
where At is the abundance

of the species in the treated group and Au is the abundance of
the species in the untreated group. To convert the continuous
values into discrete weights for the nodes, we set the weight
for the species with absolute logFC value higher than 2 as 3,
for those with absolute logFC value in the range [1, 2) as 1
and the others as -2. If the bacteria was not present in the
sample the weight was set as 0.

To infer the subset of bacteria with the greatest overall abun-
dance, the maximum weight connected subgraph (MWCS)
was extracted. Formally, MWCS is: given an undirected graph
G = (V,E) and weights w : V → R, find a subset
of nodes V ∗ such that the induced graph G∗ = (V ∗, E∗),
where E∗ = {{u, v} ∈ E|u, v ∈ V ∗}, is connected and
the overall weight

∑
v∈V w(v) is maximal. The problem is

NP-hard and exact solution requires exponential number of
constraints. Its approximation methods mainly convert it into
a Prize-Collecting Steiner Tree Problem or use linear integer
programming (ILP) formulations. Another way to come to an
acceptable solution with heuristics is to use a Relax-and-Cut
scheme, i.e. Lagrangian relaxation combined with constraint
generation [23].

For the subgraph extraction from the node-weighted under-
lying graph we used mwscr [24]. The algorithm formulates the
problem as an ILP, where decision variable is either 0 or 1.
In the relaxation step the problem is converted to a relaxed
LP problem and is solved. Then, the algorithm finds the
inequalities violating the solution of the problem and updates
the Lagrangian multipliers for the next iteration. The process
repeats until the solution is sufficiently good or the maximum
number of iterations set in the beginning is reached. As a
result, the subgraphs are inferred for each of the studies.

The data used for underlying graph construction and sub-
graph analysis is cross-sectional, i.e. observations of many
different individuals (subjects, objects) at a given time, each
observation belonging to a different individual. The subgraph
analysis data contains honeybee gut microbiome samples,
taken from Texas and Denmark studies. Texas study contains
84 untreated samples and 59 samples treated with Glyphosate
(Herbicide). Denmark study has 182 untreated samples and
39 treated with Oxalic acid (Pesticide). For the analysis, the
mean-based merged samples were used both for untreated and
untreated groups.

To visualize the resulting networks we used Cytoscape 3.9.0
with Spring Embedded layout. The square nodes stand for core
species. The red bordered nodes and edges show the identified
subgraph. Green nodes stand for positive logFC, and blue for
negative with shade standing for the value. The text size is set



Fig. 3: State space analysis of different studies.

based on the absolute logFC. The edge size is set based on
species correlation and the shape shows if the correlation is
positive or not, i.e. the specie activates or inhibits activity of
the other.

C. Data simulation

To have a ground truth for method validation, we did data
simulation with miaSim 1.5.5 [25]. Given growth rates of
species, an interaction matrix of the interactions between the
species, metacommunity probabilities, and initial abundances
of the species in the community miaSim simulates the abun-
dances in the next time points. The simulation is done based
on Lotka-Volterra dynamics model:

d

dt
Ni(t) = Ni(t)

gi +

D∑
j=1

AijNj(t)

 (1)

where Ni is the (relative) abundance of species i, gi is the
growth rate of species i, and Aij is the interaction between
species i and species j.

As miaSim generates with fixed growth rates, we changed
the tool to integrate different growth rates for each of the
timepoints if needed. This was done for external perturbation
simulation. We adjusted the growth rates through time to
simulate antibiotic effect and resistance to it.

For the analysis the same growth rates, interaction matrix
and metacommunity probabilities were used. The growth rates
for the species were uniformly generated in [0, 1] range. The
interaction matrix was generated with the default parameters.
The metacommunity probabilities were randomly generated
from Dirichlet distribution.

D. Pseudotime analysis

The temporal order of the bacterial communities are en-
coded in their abundance profiles. Diffusion pseudotime (DPT)
efficiently estimates this ordering. It measures the progression

through branching lineages using a random-walk-based dis-
tance in diffusion map space and allows for branching and
pseudotime analysis on large-scale datasets. The pseudotime
is computed in three steps. First, a transition matrix T is
constructed that approximates the dynamic transitions through
stages of the process. Second, the distance metric is defined
which shows the pseudotime of the point from the predefined
root point. Third, branching points are identified by comparing
two random walks over cells, one starting at the root point
and one starting from the point most distant from the root,
measuring the pseudotime with respect to both separately. The
two sequences of pseudo times are anticorrelated until the two
walks merge in a new branch, where they become correlated.

E. Growth rate and PTR

In the presence of the growth rates, abundances and interac-
tion matrix, the Lotka-Volterra model allows us to estimate the
derivative of population size dN

dt . Having the growth rates, the
interaction matrix and the abundances one can calculate the
dN
dt change from 1, i.e. the velocity value. Another analogue

for velocity value can be dlogN
dt log change, derived from an

equivalent equation

d

dt
logNi(t) = gi +

D∑
j=1

AijNj(t) (2)

However, in the case of real datasets another metric should
be used as the growth rates and interaction matrices are not
available. The PTR value is a measure of individual species
growing behavior [26, 27, 28, 29]. CoPTR estimates PTR
by estimating the ratio of DNA sequencing coverage at the
replication origin and the coverage at the terminus [30].
Although it ignores the interactions between the species, the
PTR measure effectively estimates the growth rates of the
species and can be used as species velocity value.

F. Simulation state space analysis

In the presence of the microbiome velocities, Cellrank
integrates the directionality information with the abundance
values and derives the transition probability matrix [21]. Using
Markov-Chains it infers macrostates, defined groups of states
that are likely to transition between each other but to states
of other groups. Based on the transition probabilities the
macrostates are classified as initial, intermediate and terminal.
With random walks and the inferred transition probability
matrix Cellrank identifies the fate probabilities towards the
terminal states, i.e. the probability that the entity will land in
particular terminal state in the future. By computing Pearson’s
correlation between the activity and fate probabilities it infers
driver features. The driver features can later be examined either
based on taxonomic information or by BLAST (Basic Local
Alignment Search Tool) which searches the query sequence
against a database of other DNA known sequences to find
regions of similarity.



(a) Pseudotime, real-time and state plots of the first 2 PCs. (b) Velocity analysis of the communities.

Fig. 4: Simulation 1 results. Each point represents one sample.

(a) Pseudotime, real-time and state plots of the first 2 PCs. (b) Velocity analysis of the communities.

Fig. 5: Simulation 2 results. Each point represents one sample.

G. Translatability

To ensure the translatability between RNA transcriptomics
and microbial data we checked the data distribution. For
comparison we used the Cellrank pancreas single cell RNA-
seq dataset. Not filtered distribution of the number of features,
i.e. identified genes and sequences, is negative binomial for
both cases (Fig. 1a,b). The RNA velocity and log change
values have normal distribution (Fig. 1c,d). We used the
absolute abundances in the simulations, as the distributions of
log change and change values for relative abundance are not
normally distributed and cannot safely be taken as velocity
equivalent (Fig. 1e,f). However, in case of real datasets this
should be taken into account as usually we deal with relative
abundances in the real life scenarios.

IV. RESULTS AND DISCUSSION

A. Finding subnetworks affected by a perturbation

To understand how a treatment and other external perturba-
tions affect the microbiome, it is useful to infer a network
of species that is treatment-specific or is most affected by
the external perturbation. The species in the network may be
a part of important pathways and biological processes. This
information can give insights about perturbation or treatment
effect and community behavioral changes after the perturba-
tion happened.

To identify this kind of networks from bee gut microbiome
datasets we did subgraph analysis. The aim was to identify
subnetworks that were most affected by treatment with either
Glyphosate or Oxalic acid. Based on the visualization, Glyh-
posate and Snodgrassella are highly affected by Glyphosate
treatment (Fig. 2a). The change in Snodgrasella activity
negatively affects numerous other species activity, such as

Staphylacoccus and Streptocaccus. Interestingly, in case of
Oxalic acid most of the species in the identified subgraph are
negatively affected by the treatment (Fig. 2b). Further analysis
can be done do explore the behavior of specific bacteria and
the role of these groups of species.

B. Microbial state space analysis

As the aim of the work was to model the dynamics of
microbiome networks over time we needed to set a ground
truth to further apply perturbations and see the effects. We
started off with a random set of species with different biolog-
ical properties. These properties are the growth rates, which
show how fast the species divide, interactions that tell how
the abundance of one species affects other species in the
community and metacommunity probabilities, that show the
likelihood that species from the metacommunity can enter the
community. We use the generalized Lotka-Voltera predator-
pray model that models the interactions using differential
equations for change.

To see what the state space looks like, we did simula-
tions for 100 species with the same growth rates, interaction
matrix and metacommunity probabilities, but different initial
abundances. We did one simulation with the initially set
parameters, and used the generated abundances of the first
20 time points as initial states for 20 different simulations
(Fig. 3). Although having slightly different initial state, the
microbial communities grow in the same direction, i.e. they
have propensity to move toward attractor states. These attractor
states are differently reachable depending on the starting state.
This means that small changes do not affect the microbiome
composition drastically, but strong perturbations might take
the system out of a local state space and push it to reach



(a) Pseudotime ordering of the communities. (b) Trajectory inference based on similarity.

(c) Correlation of sequences in different states. (d) Fate probabilities based on the identified macrostates.

Fig. 6: Analysis on a real dataset.

another attractor state which might be an irreversible change.
The question is: how strong should a perturbation be to take
the system out of the local attractor state. We will attempt to
answer this question with real-world data.

C. Applying pseudotime approach and velocity analysis in
single-cell transcriptomics to simulated microbial networks

We were interested in adopting the diffusion pseudotime
from single-cell RNA sequencing analysis that orders the cell
states according to their similarity, and assigns a starting
point and branching points to the trajectory that describes
gradual changes leading from one cell state to another along a
pseudotime axis. We took the microbiome states derived from
the simulation experiments described above, and applied the
algorithm to order the states according to their similarity. We
were interested in identifying whether the psuedotime analysis
would order the states not only according to simulation time,
but also according to the state compositions after different
types of perturbations.

For the pseudotime analysis many simulations were done
two of which are presented (Fig. 4, Fig. 5). For both of
the simulations the initially generated interaction matrix and
metacommunity probabilities were used. In the first simulation
abundances for 100 species for 600 timepoints were generated
with the initially generated growth rates. We next modeled a

perturbation that can be caused by introducing an antibiotic.
The antibiotics are usually affecting the growth rate of a subset
of bacterial species present in the community. Other effects are
indirect, as the species that change in abundance propagate
this change through interactions with their neighbors, thus,
leading to overall changes in the composition. Therefore, to
simulate antibiotic effect, after timepoint 100 the growth rates
of 7 species that had high growth rates were reduced by 0.1. To
further recapitulate a real-world scenario, where some bacteria
develop mutations over time that make them resistant to the
antibiotic, we gradually increased the growth rate of 1 of these
7 species after the time point 300 and kept it steady until the
time point 500. For the last 100 time points the growth rates
were set the same as in the beginning of the simulation, as if
the antibiotic is removed from the environment (and no longer
consumed).

In the simulation, as the initial and final phases biologically
are the same state, the pseudotime ordering correctly identified
both as early states (Fig. 4a). Also, it put resisting and
perturbation states late in pseudotime with perturbation states
followed by resisting. We thus show that the pseudotime
approach can be adapted to microbiome datasets. However,
we can also notice that even though the pseudotime orders the
initial and last phase states close to each other, it cannot detect
the trajectory of change starting from initial states and ending



at the last states (Fig. 4b). Therefore, later we also introduce
the concept of RNA velocity that helps to order states not only
based on similarity but also on directionality of change from
one state to another.

The integration of log change values as species velocity did
not significantly affect the trajectory. Although the communi-
ties correctly move from the initial states towards the pertur-
bation and resisting states, the arrows point in contradictory
directions instead of a continuous movement from first state
to the last.

In the second simulation, we used the same interaction
matrix and metacommunity probabilities. We generated the
growth rates similar to the first simulation with perturbation
and resisting states lasting 100 timepoints each instead of
200. Similarly, the pseudotime ordering captured the initial
and last states as early in time followed by perturbed and
resisting states (Fig. 5a). The velocity arrows do not perform
as expected by again pointing to contradicting directions (Fig.
5b). Further work needs to be done to adjust the methodology
in order to have arrows pointing in the right direction.

D. Applying pseudotime analysis to human gut dataset

To check the validated pseudotime analysis on real dataset
we performed the analysis on longitudinal human gut data. The
dataset contained metagenomic data of fecal samples taken
from 89 hosts in different time points over 18 months. For
the analysis we used the data from one of the donors, having
overall 205 samples.

The pseudotime ordering matches with the collection time
with directionality from the early timepoints to the late ones
(Fig. 6ab). We identified three macrostates, defined as subsets
of states that are more likely to transition between each other
than with states from other macrostates (Fig. 6cd). In addition,
we also identified driver features (bacterial sequences) that
correlated most with the transition between these macrostates.
We identified sequences belonging to species of the Genus
Bacteroides as the main drivers between these states. In-
terestingly, the original paper that has also performed high
resolution sequencing of individual bacterial strains over time,
has identified Bacteroides ovatus (a species from the same
genus) that shows differential abundances of three different
strains between three periods in time (Fig. 7) [31]. This
means that this species may have an important role in driving
longitudinal dynamics of the human gut microbiome.

This also demonstrates one of the advantages of adapting
the methods from single-cell RNA sequencing data to not only
cluster the microbiome states, but also identify species that
drive the transitions between the states and thus understand
the underlying biological mechanisms.

V. CONCLUSION

Microbial communities play an important role in organisms
as the change in their composition are associated with nu-
merous disorders. The computational methodologies for the
analysis of microbiome datasets do not usually use a network
approach for studying the dynamic changes in the community.

Fig. 7: Bacteroides ovatus abundance analysis [31].

Inspired by single cell transcriptomics and graph theory m we
suggest subgraph extraction, pseudotime ordering and velocity
analysis for microbial datasets. We show their validity on
both simulated and real datasets and suggest a few ways the
methods can be useful for further exploration.
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