
Detecting Ethereum Mixers
Amanda Akopova

College of Science and Engineering
American University of Armenia

Yerevan, Armenia
amanda akopova@edu.aua.am

Abstract—This paper aims to investigate the role of non-
custodial, trustless coin mixers, with the main focus on the
notorious Tornado Cash mixer on the Ethereum blockchain.
Through manual code review and experimental analysis, it
was possible to identify patterns and characteristics unique to
mixers. The proposed heuristic, based on deposit and withdrawal
functions, aims to aid regulatory bodies in detecting potential
illicit activities. Leveraging the available data analysis tools, it
was possible to refine the detection model and integrate heuristics
for improved accuracy. Overall, the research contributes to
understanding privacy mechanisms on Ethereum and offers
insights for regulatory compliance and financial crime prevention
as well as brings to the playground a methodology for further
refinement and research.

I. INTRODUCTION

Ethereum is the largest blockchain in the world both by its
market share and usage. Its cryptocurrency is the second most
valuable after Bitcoin and is used widely in various fields.
Ethereum transactions are all publicly stored on full nodes, and
any node can have access to all the information from the chain.
However, malicious actors can compromise this information
and infer correlations between addresses or even de-anonymize
users’ privacy having some background knowledge. This con-
cern brought to privacy-enhancing overlays being deployed on
the Ethereum blockchain. One of these privacy preservation
mechanisms are non-custodial, trustless coin mixers.

Unfortunately these “mixers” otherwise also known as
“tumblers” also play a huge role in criminal activities, such
as money laundering”. In August 2022 one of the biggest
tumblers Tornado Cash was sanctioned by the U.S. Department
of Treasury for “laundering” over $7 billion in assets, $445
million of which were connected to the well-known cyber-
criminal Lazarus Group. Tornado Cash was used to launder
$96 million funds derived from the Harmony Bridge Heist
(June 24, 2022) and at least $7.8 million from the Nomad
Heist (August 2, 2022) performed by malicious cyber actors.
Sanctions were placed on 45 addresses that were associated
with Tornado Cash, as well as the asset pools where users
deposit and withdraw from during the transactions [1]. The
founders of the mixer were arrested and charged with money
laundering [2], and the original code was taken down from the
public sources, although it is being re-uploaded periodically.
Despite all of these limitations, the decentralized structure of
the blockchain allows Tornado Cash smart contracts to be
deployed, and actively be in use till today.

Tornado cash is one of the biggest coin mixing tools on
the Ethereum blockchain. To perform a coin mixing process,
users are simply required to invoke the relevant smart contract.
This is a very convenient way to enhance user privacy and
protect sensitive data stemming from address linkability. On
the other hand this provided anonymity can shield various
illegal activities, which is a major issue in the digital currency
world, complicating the efforts of tracing illicit funds.

With the described nature of the mixers and the blockchain,
it is technically challenging to detect mixers and albeit cru-
cial to be able to maintain the integrity of the blockchain
ecosystem. Effective detection mechanisms that distinguish
potentially unlawful actions can be very vital for regulatory
bodies to enforce anti-money laundering (AML) restrictions as
well as for the organizations that seek to maintain compliance
with global financial regulations. Moreover, with the growth
of blockchain technology and the transition to the mainstream
financial platform, the use of mixers can cause a debate over
privacy versus transparency. Thus it is important to develop
methods for researchers as well as the regulators to gain
insights into the transaction flows and enhance the ability to
monitor and prevent financial crimes. This is also necessary for
the public and institutions to gain assurance over blockchain
being private and secure, yet transparent and regulated.

In summary, the contributions of this paper include:

• Analysis of Tornado Cash mixer, including summarizing
the behavior patterns of transactions.

• Review of the Tornado Cash’s smart contract’s code, as
well as comparison with other mixers’ code.

• Identification of similarities and differences between the
mixers.

• Performing an experimental analysis on the Kovan testnet
and on real-life Ethereum Mainnet.

It is worth mentioning that there is a very limited, if any,
number of tools for data analysis for the Ethereum blockchain.
You can access all the historical data of the blockchain only
if you are running an archive node, which will still require
building a database manually and requires high computation
power. The other way that is cost-effective compared to main-
taining your own database is Ethereum ETL’s public database,
available on Google’s Big Query, which is still costly since it
charges for the amount of data processed by your queries.
The other valid tool that gives information on smart contracts,

addresses, transactions, and their interactions is Etherscan,
which is very limited in its functionality to perform extensive
or automated data analysis and is used either for manual
reviews or through its API. Lastly, there is the Glider tool,
which is a novelty and is still being upgraded. With some
upcoming features, it will be possible to verify all the findings
of this research in a well-automated, comprehensive way.

II. RELATED WORK

Tang et al. [3] suggested three heuristic clustering rules to
identify address correlations in Tornado Cash’s mixing transac-
tions. They formalized two transaction patterns and conducted
an experimental analysis to reveal address linkability in the
coin mixer. This methodology aimed to find the addresses
that potentially belong to the mixer and partake in the mixing
process. In [4], researchers proposed a taxonomy to classify
Ethereum-based mixers. This taxonomy consists of five layers:
General features, Terms of use, Mixer functionalities, Deposit
functionalities and Withdrawal functionalities. This classifi-
cation gives understanding and offers recommendations on
several aspects:

- What code decisions define a mixer and what are the
characteristics of the environment?

- What prerequisites must users meet to use the mixer?
- What are the main functionalities available in mixers?
- What are the restitutions and censorships managed during

the deposit of assets?
- How execution fee coverage is handled and what censor-

ships are applied to fund withdrawals?
During the deposit process if the mixer has a fixed denom-

ination and the amount doesn’t match the denominator two
restitutions can be triggered: Revision or Refund. In the first
case the deposit transaction won’t be executed and the user
will waste transaction fees. With the second case the depositor
will get back the difference between the denomination and
the deposited amount. If the smart contract doesn’t have a
denomination there are no restitutions applied. One possible
solution to incorporate some regulatory compliance to the
deposit transaction is Blocklisting and Allowlisting addresses
that can use the mixer through deposit transactions [5]. This
way mixer’s smart contract will first check with authorities
whether the address is associated with sanctioned or embargo
lists before accepting the user’s funds into its pools.

Mixer detection is yet a field that hasn’t been extensively
explored. Due to their decentralized and pseudonymous nature,
mixers pose a myriad of unique challenges. This makes them
particularly difficult to detect and analyze. Existing research
has mainly focused on heuristic clustering rules or taxonomies,
which helps to understand the characteristics and functionali-
ties of mixers, but not on direct detection methods. In addition,
there is a limited availability of tools and relying on manual
verification processes add up to the challenge of effectively
detecting mixers. Thus, there is a need for the development
of specialized tools and methodologies dedicated to mixer
detection, which will help to address the growing concerns
surrounding their use in facilitating illicit activities.

III. METHODOLOGY

A. Selection of Mixers for Analysis

For this research, the main mixer that will be used is
Tornado Cash as well as Miximus, Möbius, MixEth, Mi-
croMix and Furrious Mixer. These mixers employ similar
foundational mechanisms and architecture with some logical
or structural differences like the usage of zk-SNARKs, other
zero-knowledge proofs such as Chaum-Pedersen protocol, ring
signatures etc. For instance MixEth [6] was developed as
an enhancement to Möbius [7] and Miximus. The selection
criteria for these mixers is based on several factors. The main
one is the code availability of the mixer. With the regulatory
processes stemming from the Tornado Cash incident there is
very little public data available on mixers. Code accessibility
is crucial for a thorough analysis to allow a detailed review
on the main functionalities and algorithms present in mixers’
logic.The second criteria is determining whether any of these
mixers has been deployed on the Ethereum blockchain. This
will help to identify the practical relevance and adoption of
the mixer. A mixer’s deployment on Ethereum indicates active
usage and provides a real-world environment to evaluate its
performance and security. Despite its legal issues, Tornado
Cash still remains one of the most widely discussed and used
mixers, with its original code being repeatedly reused in other
smart contracts. This is why Tornado and its successors are
used as the primary mixers for this analysis, with the goal to
further expand to other mixer architectures and other chains.

B. Code Review Process

To further proceed with the analysis a manual detailed code
review has been conducted. All the mentioned mixers’ codes
were written in Solidity, the highly utilized programming
language for Ethereum smart contracts. Smart contracts are
the computer programs that are stored on the blockchain. Once
created, they can’t be modified and all of them are guaranteed
to execute according to the rules that are defined in their code
[8]. Key functions of interest were deposit and withdrawal
mechanisms which were closely examined. Special attention
was given to the implementation of cryptographic techniques
like zk-SNARKs, Chaum-Pedersen protocol, which are crucial
for ensuring privacy while maintaining transparency. This
analysis helped to map out the landscape of current mixer
technologies.

C. Data Collection

1) Sources of Ethereum Transaction Data and Functions
Data: Anyone can access the full Ethereum transactions’
history via the archive node. Ethereum can be described as
a transaction - based state machine. After each block the state
of the blockchain is updated. Archive node is responsible for
storing all the historical states starting from the very first
block of the Ethereum blockchain [9]. Ethereum ETL provides
a public relational database which is available on BigQuery
[10]. For this research the BigQuery dataset has been utilized
extensively, and specific data related to the mixers in question
was extracted. The whole Ethereum transactions table consists

of 2,362,232,294 transactions and is 2 Terabytes in size. Ad-
ditionally, the Ethereum Signature Database [11] was utilized
to get insights into the functions and their signatures, which
were used in identifying and differentiating the mixers based
on their operational logic.

2) Data privacy and security measures: Considering the
sensitivity of the data, strict data privacy and security measures
were followed. All data handling processes were done accord-
ing to general data protection regulations (GDPR) to ensure
that the privacy of individual users wasn’t compromised.
Moreover, transparency in data processing was maintained to
allow for the reproducibility of the research.

IV. ANALYSIS OF MIXER CODES

A. Case Studies

During this research while looking through the smart con-
tracts of the proposed mixers it was noted that only three out of
six were ever used or even deployed on the Ethereum Mainnet.
These are Tornado Cash and supposedly Furious Mixer and
Miximus. Möbius, MixEth and MicroMix were all ruled out.

B. Overview of Common Functions in Mixers

Throughout the code analysis there were three functions
that caught the main focus for mixer identification, those
are deposit(), withdraw() and denomination().
During the deposit phase, the user initiates the mixing process
by sending cryptocurrency to the smart contract’s address. For
example, in Fig. 1 we can see that the user sends Ethereum
funds from address a. The transaction includes cryptographic
elements to conceal the origin of the funds.The created deposit
transaction is accompanied with a cryptographic note, which
is a unique identifier that secures the details of the transac-
tion without revealing the user’s identity. In case there is a
denomination the amount sent by the user must match to the
denomination present in the smart contract. In case it doesn’t,
Revision or Refund will take place. If the smart contract
doesn’t have the denomination, we immediately proceed to
the withdrawal. Before the withdrawal process begins, there
might be a predefined delay, which helps to obfuscate the trail
of funds. After that, the user uses the previously generated
cryptographic note, and requests the smart contract to retrieve
funds to defined address b. This can be any address that the
user controls and is not linked to his/her identity. In case the
withdrawal address doesn’t have sufficient amount to cover
the gas fee of this transaction, a Relayer can be called. The
Relayer forwards all the necessary parameters, for a small fee
(f).The remaining balance (N - f) is then transferred to the
user’s address [3].

C. Tornado Cash Mechanisms

To better understand the role of the mentioned functions,
it is necessary to analyze the exact mechanism behind the
mixer’s code. The reuploaded code of Tornado Cash mixer
is available on GitHub and was referred to for this analysis
[12]. Here are some highlights of how Tornado Cash functions
which also represents the core mechanism of other mixers:

Fig. 1: The process of Tornado Cash coin mixing contract
[3].

1) Cryptographic foundations: As a cryptographic foun-
dation, Tornado Cash uses a pairing-based cryptography ap-
proach. It utilizes elliptic curve pairings to facilitate complex
SNARK (Succinct Non-Interactive Argument of Knowledge)
proofs, ensuring transactional privacy without revealing user
identities. In addition there are two hashes being used:

• Pedersen Hash (H1): Used for creating commitments. A
commitment to a secret (such as a transaction amount
or user identity) allows a user to keep the secret hidden
while proving that they know it.

• MiMC Hash (H2): Employed within the Merkle tree for
efficient and secure aggregation of transaction data.

2) Merkle Tree: A binary Merkle tree of height 20 stores
transactions in a privacy-preserving manner. Each leaf in the
tree represents a transaction or a commitment, and the tree’s
structure allows for compact and secure proofs of inclusion.

3) Zero-Knowledge Proofs: These are zero-knowledge
proofs that allow a prover to establish possession of certain in-
formation (e.g., a correct transaction or a valid state transition)
without revealing the information itself.

4) Smart Contract Operations:

• Deposits: Users deposit into the smart contract by sending
ETH along with a hash of their secret, which is added to
the Merkle tree.

• Withdrawals: To withdraw, a user proves their right to
a previous deposit without revealing which one, using a
zero-knowledge proof that references the Merkle tree.

• Handling Fees: A fee mechanism compensates relayers
who submit transactions on behalf of users, maintaining
anonymity.

5) Security Measures:

• Unique Nullifiers: Ensure that each deposit can only be
withdrawn once, preventing double-spending.

• History Tracking: The contract keeps a history of all root
hashes of the Merkle tree to verify proofs against.

6) External Interactions: Relayers: Facilitate the process of
broadcasting transactions to the network, helping users main-
tain privacy by masking the origin of Ethereum transactions
[16].

D. Function Selector Calculator

When a user creates a deposit transaction he/she proceeds
with an input field. This Input Data field allows to include
additional information related to the transaction. For this
research the main focus was on one type of data that can
be passed to the input field: function call data. Function
call data shows the function signature (Method ID) that the
transaction calls. This signature is represented in the first four
bytes of the input field followed after 0x [13]. In Fig. 2 is
an example of a function call data for a deposit transaction
to the Tornado Cash’s 10 ETH denomination address. The
Method ID 0xb214faa5 is the function signature corresponding
to the deposit(bytes32 id) function. And as it was already
established, id is the commitment in Tornado Cash’s code.

Fig. 2: Deposit Transaction to Tornado.Cash: 10 ETH
Address (Etherscan) [14].

With the help of function signatures it was possible to
establish whether the mixers were deployed on Ethereum
Mainnet or not. A Function Selector calculator tool was used
[15] to determine the function signatures of the known mixers.
In Table 1. are illustrated the functions of the mixers and their
respective signatures. Afterwards these signatures are being
tested through the BigQuery Ethereum public dataset as the
first four bytes of the input field. If no data is found it explains
that no such smart contract has ever been deployed on Mainnet
or no transaction with that function has been sent(Fig. 3). This
approach helped to rule out the patterns in known mixers that
don’t need to be considered in the heuristic proposal.

SELECT *
FROM ‘bigquery-public-data.crypto_ethereum.
transactions‘
WHERE input like ’0xc515627e%’
LIMIT 10

Fig. 3: SQL Query on Ethereum Transactions

V. HEURISTICS

A. First Heuristic Proposal

The proposed heuristic is based on the patterns discov-
ered during the code review of the mixers’ smart contracts.

The key focus was on deposit() and withdraw() functions
that are persistent throughout the architecture of the mixers.
The important distinctive features specific to mixers are also
the availability of MerkleTrees, verifier() function, as well
as the use of nullifier, denomination and relayer. However
the primary heuristic chosen for detecting the mixers is the
pattern recognition of the deposit() function, which is the
most consistent mechanism out of all the proposed patterns.
The verifier() function can be easily omitted from the pattern
recognition heuristic, since it is present in all smart contracts
that utilize prover algorithms such as zero-knowledge proofs,
Chaum-Pedersen proof and other cryptographic proofs. The
denomination is excluded since we discussed that not all of
the mixers might necessarily have denomination, however we
still can consider it as a distinctive pattern. Merkle Trees are
a fundamental component in many blockchain applications,
since they provide an efficient and secure way to summarize
and verify the integrity of large datasets. Relayers are also a
broad utility since they facilitate transactions in a decentralized
environment by helping users to interact with various smart
contracts without directly paying gas fees. Nullifiers, playing
a huge role in mixers, are used to ensure that a particular
action is not repeated, thus preventing double-spending. They
are used in different protocols where the uniqueness of an op-
eration is required. Finally, the deposit function is also present
in various smart contracts, however the code analysis results
showcased one distinctive pattern. In Table 1 it is indicated that
three mixers are using specifically deposit(bytes32) function,
the two other functions were never used in any transactions
and deposit(uint256) was present in the input field, however it
is a more common function among smart contracts and as an
initial heuristic will give more false positives. The withdraw()
function is also distinctive throughout the mixer codes since
it contains checking the proofs, verification and nullifier(Fig.
4). However, it was not chosen as the primary heuristic
pattern due to the logic of the mixers’ cycle, as deposit()
logically precedes withdrawal and the latter can’t be performed
without the first one. Despite the main heuristic focusing on
the deposit(bytes32) function, all mentioned patterns must be
considered for validating the proposed heuristic.

B. Refined Heuristic

After testing the first heuristic, in total 737 addresses
were found with approximately 72% false positive results.
For cleaning up the data sentimental filtering was performed
narrowing it down to 211 addresses, which still yielded nearly
10% false positives. This required a lot of manual testing
and code reviews, especially with the lack of tools. The
results of this testing revealed that the pattern recognition of
deposit(bites32) function must be paired with the withdraw()
function. As showcased in Fig. 4, withdraw() function contains
various parameters such as the relayer, recipient, nullifier, etc.
Most importantly, it calls the verifyProof() function, which
plays a crucial role for users to be able to withdraw their mixed
funds. Thus the improved heuristics suggests that paired with
the deposit(bytes32) function, it is crucial to check that the

TABLE I: Overview of Ethereum Mixers and Their Deposit Functions

Mixer Deposit Function Function Signature Availability
Tornado Cash deposit(bytes32 commitment) 0xb214faa5 Yes

Miximus deposit (bytes32 leaf) 0xb214faa5 Yes

Möbius depositEther(address token, uint256
denomination, uint256 pub x, uint256 pub y) 0xc515627e No

MixEth depositEther(uint256 initPubKeyX, uint256
initPubKeyY) 0xb1265107 No

MicroMix deposit(uint256 identityCommitment) 0xb6b55f25 Maybe
Furrious Mixer deposit(bytes32 note) 0xb214faa5 Yes

function withdraw(
bytes calldata _proof,
bytes32 _root,
bytes32 _nullifierHash,
address payable _recipient,
address payable _relayer,
uint256 _fee,
uint256 _refund

) external payable nonReentrant {
require(_fee <= denomination,
"Fee exceeds transfer value");
require(!nullifierHashes[_nullifierHash],
"The note has been already spent");
require(isKnownRoot(_root),
"Cannot find your merkle root");
require(

verifier.verifyProof(
_proof,
[uint256(_root), uint256(_nullifierHash),
uint256(_recipient),
uint256(_relayer), _fee, _refund]

),
"Invalid withdraw proof"

);

nullifierHashes[_nullifierHash] = true;
_processWithdraw(_recipient, _relayer,
_fee, _refund);
emit Withdrawal(_recipient,
_nullifierHash, _relayer, _fee);

}

Fig. 4: Code Snippet of Tornado Cash Mixer’s Withdraw
Function

smart contract contains a withdraw() function which includes
any type of “verification”.

VI. IMPLEMENTATION

A. Glider

Glider [16] is a code query engine which can perform
variant and data analysis on smart contracts. It is the first
and only tool on blockchain that gives the ability to query
through the source code of all the verified smart contracts
deployed on integrated EVM blockchains. The language used
for querying is Python. Users can query freely through testnet
(Kovan) contracts, but for mainnet queries they are required
to get access. In the scope of this research Glider was used
to perform the pattern recognition and get the smart contracts
that contain the specified patterns. The most important feature
that makes Glider an amazing tool for blockchain analysis is
that it treats smart contracts as data objects.

1) Pattern Matching using Glider: The refined query de-
signed to perform pattern recognition based on second heuris-
tic (Fig. 5) firstly filters all the contracts where there is a
deposit() function that takes an argument of bytes32 and
also has the withdraw() function. After iterating through the
resulting contracts it takes withdraw functions where “require”
function is used. If the “require”-’s operand has “verif” (to
match all the variations) name, the query returns the matched
results. The result includes the address, contract name and the
code snippet of the resulting smart contracts.

from glider import *

def query():

contracts = (
Functions().
with_signature("deposit(bytes32)").
contracts().
with_all_function_names(["withdraw"]).
exec()

)

output = set()

for contract in contracts:
instrs = (

contract.
functions().
with_name("withdraw").
instructions().
with_called_function_name("require").
exec()

)

for ins in instrs:
calls = ins.get_callee_values()
for call in calls:

if call.get_name() == "require":
if "verif"
in call.get_args()[0].expression:

output.add(contract)
break

return list(output)

Fig. 5: Python Query in Glider For Matching Smart Contracts

The smart contracts in Glider are grouped by their byte-
codes. This means if two contracts have the same bytecode
Glider will return only one address. For example, if con-
tract “ERC20Tornado” and “Tornado” have exactly the same
bytecode, since their source codes are the same, as a result
it will be possible to get only one address instead of two.
Sadly, this will decrease the number of extracted addresses.

Thus data preprocessing was conducted, by joining those smart
contracts’ names under the same address. As a result we get
a list of unique addresses, and smart contract names. The
total number of extracted addresses is 110. Lastly, with the
confirmed list of the mixers, which included their names, it
was possible to match the contract names with the initial
result of the first heuristic and get a list of 152 addresses.
The additional 42 addresses are the addresses associated with
our confirmed mixers, that don’t have the specified withdrawal
functionalities, rather are the proxies, routers or wrappers.

B. BigQuery

The resulting addresses were joined with BigQuery’s
Ethereum transactions table, to filter out the addresses that
have received transactions, in other words “have been used”.
With the help of the transactions database, it was also possible
to retrieve the number of transactions sent to these mixers, as
well as the last block timestamp. The block timestamp shows
when the block was created. It takes from 15 seconds up to a
minute for a new block creation in Ethereum, thus the offset
between the actual transaction time and the block timestamp
is very small. With the last block timestamp it is possible
to identify approximately when was the last transaction sent
to the specified address, therefore detecting when was the
last time the mixer was used. Out of 152 addresses, only 84
were matched through the transactions table and confirmed
to participate in transactions. This implies that the other 68
contracts were never used after their creation.

1) Additional research: As an additional research it was de-
cided to test unverified contracts. Glider contains the database
of all the verified contracts, however there can be mixers that
didn’t get their addresses verified to protect their anonymity.
With the use of BigQuery it was possible to extract all
the addresses that have received transactions with the input
starting with 0xb214faa5, which falls in the pattern recognition
technique of the first proposed heuristic. As mentioned above
0xb214faa5 is the signature of deposit(bytes32) function, and
this method will give us the list of addresses that have
received this specified transaction. It yielded a list of 160
addresses. These addresses were run through Etherscan’s API
to differentiate the ones that don’t have verified contracts. As a
result 44 addresses were found to be unverified. Unfortunately
from this point it is possible to check whether these addresses
are mixers by manually decompiling each source code, which
is not necessarily accurate. As an initial result at least three
addresses were mixers.

VII. RESULTS

A. Summary of Identified Patterns

The analysis conducted on Tornado Cash and other
Ethereum-based mixers has uncovered several distinguishing
patterns and behaviors which are pivotal in identifying mixer
use within the blockchain. The summary of identified patterns
revolves around key smart contract functions, usage character-
istics, and the application of cryptographic principles.

- The review identified deposit(bytes32) as a distinctive
function signature commonly used across Tornado Cash and
similar mixers. This function involves depositing funds using
a unique identifier, which preserves anonymity but is traceable
to a specific transaction pattern.

- Mixers with differing deposit functionalities were tested
through their function signatures. The presence of these signa-
tures on the blockchain helped to pinpoint active and inactive
mixers.

- Examination of block timestamps indicated that despite
various sanctions and legal actions, Tornado Cash and several
other mixers remain actively used on the Ethereum Mainnet.

- The use of zero-knowledge proofs, specifically zk-
SNARKs, and other cryptographic methods like the Pedersen
and MiMC hashes were notable. These are employed to
validate transactions without compromising the privacy of the
involved parties.

- A binary Merkle tree structure is commonly used to
store transaction data, ensuring both privacy and verifiability
of the mixer’s operations. Additionally, nullifiers are utilized
to prevent double-spending by marking each spent note as
”nullified,” ensuring that once a note is withdrawn, it cannot
be reused.

- Mixers implement denominations as a practical mecha-
nism, which helps users deposit and withdraw fixed amounts
(e.g., 1, 10, or 100 ETH).

- The use of relayers and the implementation of transaction
fee mechanisms within these mixers also stood out. Relayers
help mask the original source of a transaction, further compli-
cating the traceability.

- The initial heuristic based on the ‘deposit(bytes32)‘
function pattern yielded a large number of potential mixer
addresses. However, it provided a significant amount of false
positives.

- Refined heuristics incorporating both deposit and with-
drawal functions, and their associated cryptographic checks
(proof verification), proved more effective in identifying mix-
ers with higher accuracy.

These patterns form the foundation of a heuristic approach
that can be further refined and used by regulatory bodies
and researchers to monitor and analyze mixer usage on the
Ethereum blockchain. The study has shown that while mixers
can be used for illicit activities, they also play a critical role
in protecting user privacy. This dual nature presents ongoing
challenges and opportunities in the pursuit of blockchain
transparency and privacy.

B. Findings

n total 152 mixer addresses were identified, 84 of them be-
ing used for funds deposit or withdrawal. Fig. 6 illustrates the
number of addresses associated with each mixer, comparing
their total occurrences versus how many were actually used
for transactions.

As a result Tornado Cash has 29 addresses out of 63 that
have been used for mixing. A total of 19 mixers were iden-
tified. After filtering through BigQuery’s dataset, 14 of these

Fig. 6: Number of addresses associated with mixers.

mixers were confirmed to have participated in transactions.
In Fig.7 is shown the number of total transactions of each
mixer, the count of the addresses and the year of the most
recent transaction. Tornado Cash’s 29 addresses have received
356217 transactions, last one being in 2024. It also highlights
the mixers that are still in use: Tornado Cash, Blender, Cosmic
Mixer, Mixshit, and Hush Mixer.

Fig. 7: Total amount of transactions of all the mixer’s
addresses and the year of the last transaction

VIII. FUTURE WORK

Of the 84 addresses analyzed, 32 were last used in 2022, 20
in 2023, and 9 in 2024. This pattern may be attributed to legal
issues arising from the Tornado Cash incident and subsequent
sanctions(Fig. 8).

Fig. 8: The number of addresses and their last transaction’s
year

IX. FUTURE WORK

In future work, the research can expand on improving de-
tection mechanisms by incorporating machine learning models
that evolve with changing mixer patterns. With the future
updates on blockchain’s analytical tools it will be possible
to conduct more extensive and automated research to unravel
illicit activities and anomalies.

Moreover, developing advanced privacy-preserving analyt-
ics will enable more effective monitoring of mixer operations
without compromising the privacy of innocent users.

Regulatory frameworks also present an important area for
further exploration. Future studies could delve into assessing
the impacts of global and regional regulations on mixer
adoption, seeking ways to implement regulatory measures that
balance security with blockchain’s decentralized nature.

Cross-chain mixer detection would offer a broader and more
comprehensive view of laundering networks, as criminals may
increasingly utilize multiple blockchains. Developing tools
that work across various networks would yield more accurate
insights into global mixing practices.

Lastly, research should focus on building more sophisticated
network analysis models to map out relationships between
mixer contracts, wallets, and decentralized applications. This
would illuminate the structure of illicit operations, helping
to anticipate and disrupt their strategies before they evolve
further.

In the scope of this research, plans include further improving
the pattern recognition model to detect mixers that differ in
architecture from Tornado Cash and other mixers identified in
this study.

REFERENCES

[1] ”Treasury Sanctions Virtual Currency Exchange for Laundering Ran-
somware Proceeds,” U.S. Department of the Treasury, September
16, 2022. [Online]. Available: https://home.treasury.gov/news/press-
releases/jy0916. [Accessed: March 3, 2024].

[2] ”Tornado Cash Founders Charged with Money Laundering and Sanctions
Violations,” U.S. Department of Justice, Southern District of New
York, [Online]. Available: https://www.justice.gov/usao-sdny/pr/tornado-
cash-founders-charged-money-laundering-and-sanctions-violations. [Ac-
cessed: March 3, 2024].

https://home.treasury.gov/news/press-releases/jy0916
https://home.treasury.gov/news/press-releases/jy0916
https://www.justice.gov/usao-sdny/pr/tornado-cash-founders-charged-money-laundering-and-sanctions-violations
https://www.justice.gov/usao-sdny/pr/tornado-cash-founders-charged-money-laundering-and-sanctions-violations

[3] Y. Tang, C. Xu, C. Zhang, Y. Wu, and L. Zhu, ”Blockchain Transaction
Analysis for Privacy Preservation in Ethereum Mixer,” in Communica-
tions in Computer and Information Science (CCIS), vol. 1506, China
Cyber Security Annual Conference, Springer, 2021, pp. 23-35.

[4] T. Barbereau, E. Ermolaev, M. Brennecke, E. Hartwich, and J. Sedlmeir,
”Beyond a Fistful of Tumblers: Toward a Taxonomy of Ethereum-based
Mixers,” presented at the 44th International Conference on Information
Systems, Hyderabad, India, Dec. 2023.

[5] Burleson, J., Korver, M., and Boneh, D. (2022). Privacy-protecting
regulatory solutions using zeroknowledge proofs. a16z crypto.

[6] Seres, I.A., Nagy, D.A., Buckland, C., Burcsi, P.: Mixeth: efficient,
trustless coin mixing service for ethereum. In: International Conference
on Blockchain Economics, Security and Protocols (Tokenomics 2019).
Schloss Dagstuhl-LeibnizZentrum fuer Informatik (2019)

[7] Meiklejohn, S., Mercer, R.: Möbius: trustless tumbling for transaction
privacy. Proc. Priv. Enhanc. Technol. 2018(2), 105–121 (2018)

[8] Ethereum, ”Smart Contracts,” Ethereum.org, 2024. Online. Available:
hhttps://ethereum.org/en/smart-contracts/. [Accessed: 1-May-2024]

[9] Ethereum, ”Nodes and Clients - Archive Nodes,” Ethereum.org.
[Online]. Available: https://ethereum.org/en/developers/docs/nodes-and-
clients/archive-nodes/. [Accessed: 1-May-2024]

[10] Ethereum ETL, ”Google BigQuery,” in Ethereum ETL Documentation.
[Online]. Available: https://ethereum-etl.readthedocs.io/en/latest/google-
bigquery/. [Accessed: 3-May-2024]

[11] 4byte Directory, ”Home,” 4byte Directory. [Online]. Available:
https://www.4byte.directory [Accessed: 19-April-2024].

[12] Tornado Cash, GitHub repository, [Online]. Available:
https://github.com/tornadocash [Accessed: 12-April-2024].

[13] Etherscan, ”Understanding Transaction Input Data,”
Etherscan Informational Articles, [Online]. Available:
https://info.etherscan.com/understanding-transaction-input-data/
[Accessed: 23-April-2024].

[14] Etherscan, ”Ethereum Transaction Hash (Txhash) Details,”
[Online]. Available:https://etherscan.io/tx/0x4af2f444e80675
56884df01cd6a3894bac108119a122df390d7fd4420b5a5dd5 .
[Accessed: 23-April-2024].

[15] .”EVM Function Selector,” [Online]. Available: https://www.evm-
function-selector.click. [Accessed: 1-May-2024].

[16] A. Pertsev, R. Semenov, and R. Storm, ”Tornado Cash Privacy So-
lution Version 1.4,” December 17, 2019. Available: https://berkeley-
defi.github.io/assets/material/Tornado

[17] Glider Documentation:https://glide.gitbook.io/main
BigQuery’s Ethereum ETL: ttps://cloud.google.com/blog/products/data-
analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

https://ethereum.org/en/smart-contracts/
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes/
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes/
https://ethereum-etl.readthedocs.io/en/latest/google-bigquery/
https://ethereum-etl.readthedocs.io/en/latest/google-bigquery/
https://etherscan.io/tx/0x4af2f444e8067556884df01cd6a3894bac108119a122df390d7fd4420b5a5dd5
https://etherscan.io/tx/0x4af2f444e8067556884df01cd6a3894bac108119a122df390d7fd4420b5a5dd5
https://glide.gitbook.io/main
ttps://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
ttps://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

	Introduction
	Related Work
	Methodology
	Selection of Mixers for Analysis
	Code Review Process
	Data Collection
	Sources of Ethereum Transaction Data and Functions Data
	Data privacy and security measures

	Analysis of mixer codes
	Case Studies
	Overview of Common Functions in Mixers
	Tornado Cash Mechanisms
	Cryptographic foundations
	Merkle Tree
	Zero-Knowledge Proofs
	Smart Contract Operations
	Security Measures
	External Interactions

	Function Selector Calculator

	Heuristics
	First Heuristic Proposal
	Refined Heuristic

	Implementation
	Glider
	Pattern Matching using Glider

	BigQuery
	Additional research

	Results
	Summary of Identified Patterns
	Findings

	Future Work
	Future Work
	References

