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Composing music is traditionally a realm of human 
creativity, intuition, and emotion. However, recent 
advancements in deep learning algorithms have opened 
directions for the exploration of automated music 
generation. The primary objective of this research is to 
create a generative AI model capable of producing 
moderate sounding compositions that resonate with the 
cultural nuances of Armenia. We seek to expand the 
realm of creative possibilities in Armenian music 
composition and to contribute to the preservation and 
promotion of Armenian cultural heritage. We employ 
the MusicGen model for text-to-music generation with 
efficient implementation of the training pipeline, 
significantly enhancing both speed and memory 
utilization. The MusicGen small checkpoint is fine-
tuned on a musical corpus of 62.8 hours of Armenian 
music extracted from the internet. The results were 
satisfactory where the human evaluators provided on 
average a rating of 3.84 points from 5 regarding the 
generated music quality and 3.96 points from 5 
concerning the relevance of the given text condition to 
the generation, indicating the model’s ability to 
generate adequate sounding Armenian compositions 
aligning with the textual descriptions provided to the 
model. By pioneering the development of an advanced 
music generation model for Armenian music, we not 
only showcase the potential of artificial intelligence in 
creative domains but also foster Armenian, cultural 
appreciation and innovation.  

Keywords—MusicGen, Generative AI, Armenian 

Music Generation, Transformers, Music. 

I. INTRODUCTION  

A. Background 

Music stands as a profound expression of emotion, 
culture, and innovation. It is a universal language that 
went through civilizations with countless 
transformations. From the invention of musical 
notation in the ancient past to the rise of digital 
recording and distribution in the modern age, the way 
people create, listen, and interact with music has 
progressed significantly. Armenian music, deeply 
rooted in the country's rich cultural heritage, reflects a 
blend of indigenous folk traditions coming from the far 
past. Traditional Armenian music often features 
emotive melodies played on instruments like duduk, 
kanon, and zurna, evoking emotions ranging from joy 

to sorrow. In modern times, Armenian music has 
diversified, incorporating contemporary genres like 
pop, rock, and jazz, while still maintaining its distinct 
identity and remaining a vibrant expression of the 
nation's culture. 

B. Artificial Intelligence and Music Generation 

The process of creating music, which is traditionally 
an art form deeply rooted in human creativity, intuition, 
and emotion, has emerged in recent years in the field of 
artificial intelligence. Deep Learning, in this case, 
requires special attention, which remarkably outstands 
traditional machine learning algorithms by the ability to 
automatically discover complex patterns and 
relationships within data. Over the past few years, the 
field of deep learning experienced a sharp evolution 
bringing groundbreaking advancements and various 
applications in different domains such as voice 
recognition, translation, and text-to-speech analysis [1]. 
The rapid development made algorithms reach into 
unprecedented realms that previously seemed 
unrealistic to achieve. One such example is a branch of 
artificial intelligence focused on creating new data or 
content that never existed before, called Generative AI, 
which primarily utilizes deep learning algorithms that 
proved to be particularly prominent in this field. The 
process of creating music using deep learning, which is 
known as music generation, appeared first in the late 
1980s as one of the very first efforts to use artificial 
neural networks in the field [1]. 

C. Domains For Music Generation 

The two most common music generation domains 
include symbolic and waveform music generation. [2] 
Symbolic music is represented as discrete data; such as 
sequences of musical notes or events. The format of 
symbolic music is standardized and can be easily 
shared and interpreted by musicians. Waveform music 
generation refers to the process of creating audio 
waveforms directly, which represents sound in a 
continuous domain. While symbolic music is used for 
music production, controlling stage effects in live 
performances and studio recordings, the waveform 
format is commonly used in sound design for film, 
television, and multimedia projects. People most 
commonly interact with waveform music, thus, 
waveform generation is preferable for daily or 
commercial uses. 
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D. Deep Learning 

As mentioned earlier, deep learning models can 
automatically learn complex relationships in the dataset 
and uncover patterns that are not directly observable. 
The motivation lies in using modern neural network 
architectures to train a model on a huge musical corpus 
to automatically learn musical styles which can 
subsequently be used to generate new compositions. 
An abstract music generation model would generate a 
music piece given certain conditions. The algorithm 
then will iteratively adjust its internal parameters to 
minimize the difference between its prediction and the 
original music. This optimization process is guided by 
a loss function, which quantifies the discrepancy 
between the generated music and the actual 
composition. Techniques such as transfer learning, 
where pre-trained models are fine-tuned on new tasks, 
can further accelerate the adoption of a deep learning 
model by alleviating the need for large amounts of 
labeled data. However, it’s not all smooth sailing - the 
music generation task is full of challenges and 
limitations. 

E. Challenges and Limitations 

Firstly, generating music requires modeling long 

range sequences [3]. Music is inherently sequential 

with melodies and harmonies unfolding over time. 

Thus, each note depends on the previous notes in an 

autoregressive manner and it is crucial to capture the 

long-form relationship between notes.  

Secondly, unlike speech, music requires the 

operation of full frequency information [4]. Human 

perception is very sensitive to music structure and 

things that do not sound right together are easily 

noticed. [6] According to Nyquist sampling theorem 

[5], in order to accurately reconstruct a continuous 

signal, it must be sampled at a rate at least twice the 

highest frequency present in the signal. This indicates 

that in order to fully capture the range of frequencies 

in music recordings, a higher sampling rate is 

necessary. While 16 kHz sampling rate is considered 

more than enough for speech recordings, music 

samples need closer to 44.1 kHz or 48 kHz, to ensure 

that they can accurately represent the complex 

harmonies and melodies [3]. The fact that music 

recordings need higher sampling rates raises another 

two important complications. 

The sampling rate is the number of data points of a 

continuous signal that are taken per second to 

represent the original analog signal in a digital format 

[4]. Thus, a three-minute recording of a 48 kHz 

sampling rate will have 8.64 million data points. The 

large amount of information that is to be processed 

requires significant computational power and memory 

resources. Additionally, more sophisticated model 

architectures and training strategies have to be 

implemented to effectively learn the high-dimensional 

music data. The second point refers to the availability 

of high quality data and the potential increase in the 

size of the audio files. Storing high sampling rate 

audio files requires more disk space compared to lower 

sampling rates and collecting particularly high-quality 

data can create some difficulties due to lack of 

availability and high cost. 

F. Our Contribution 

In this work, we fine-tune the recent MusicGen 
model developed by Jade Copet et al. for Meta AI [3] 
with several modifications for better efficiency. 
MusicGen is a state-of-the-art and powerful model for 
music generation based on a single language model. 
We use Armenian music of different genres, moods, 
and instruments for fine-tuning the model. Our task is 
to achieve a generative model that is able to compose 
moderate-sounding Armenian music controlled by a 
text, which can expand creative possibilities and 
promote the rich musical heritage evolution into the 
future, as well as be the starting point for encouraging 
researchers to concentrate particularly on Armenian 
music generation. 

II. LITERATURE REVIEW 

A. History Of Music Generation 

The history of music generation is well described in 
[1]. According to the article, one of the first known 
cases, even before computers, was attributed to Mozart. 
The piece of music was created by concatenating 
randomly chosen pieces of music that were selected by 
throwing a dice. Computer-based generation started in 
the late 1950s using probabilistic models like Markov 
chains and other filtering methods for achieving desired 
output.  

B. One Of The First Deep Learning Models 

Peter Todd was one of the first researchers to make 
use of neural networks for music generation in 1989 
[7]. The paper implemented two different three-layer 
sequential networks that were supposed to learn certain 
aspects of musical structure from a chosen dataset of 
musical examples, enabling it to then generate new 
pieces based on the acquired knowledge. Both 
networks were designed to exactly recreate the given 
set of musical examples suggesting that the network 
has learned the musical structure. The first method 
involved using time-windowed generations, 
sequentially by providing the first window as the input 
to the second window generation. The second method 
was closer to recurrent network architecture where the 
input was divided into memory and a plan guiding the 
network’s actions by identifying the specific sequence 
being learned or generated. 
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C. Modern Deep Learning Models 

Modern deep learning algorithms for music 
generation can be separated into three main stages: 

1. The first stage of modern music generation 

algorithms includes implementing recurrent neural 

networks (RNN, LSTM, GRU) for music 

generation. For years, recurrent neural networks 

were state-of-the-art approaches for modeling 

sequential data [8, 9]. However, they all struggle to 

retain information over very long sequences. 

2. The second stage refers to the deployment of 

Variational AutoEncoders (VAEs) or Generative 

Adversarial Networks (GANs) for music 

generation. MidiNet [10] and MuseGAN [11] are 

some of the most cited examples of symbolic 

music generation using GANs. MIDI-Sandwich2 is 

a mix of RNNs and VAE networks for multi-track 

symbolic music generation. [12] 

3. The third stage is the application of transformers in 

the music domain. Transformers architecture 

surpassed previous architectures in various 

sequential data benchmarks and applications. The 

usage of transformer-based language models is 

very popular nowadays in music generation due to 

its unique attention-based mechanism that learns 

long-term relationships between the time steps. [3, 

13, 14] 

III. MUSICGEN 

A. About MusicGen 

MusicGen is a single language model trained for 
conditional music generation. [3] It provides three 
available versions: Small, Medium, and Large. The 
general architecture is the same for all with several 
modifications in the number of layers and specific layer 
dimensions. The results show that MusicGen provides 
satisfactory results showing outperforming results in 
various benchmarks. The supremacy of MusicGen is 
defined by its three main building blocks: 

1. The use of the modern audio tokenizer model 

which allows the model to curtail the long, 

continuous audio representations into short, 

discrete representations that enable the usage of 

transformers. This means that instead of dealing 

with high-dimensional data, it converts the audio 

signal into a more compact and structured 

representation. This approach significantly reduces 

the computational power for processing audio, 

while still retaining enough information to capture 

the essential musical features. 

2. Being able to be conditioned both by text and 

melody. This means that given a textual description 

that matches an audio, generation aims to reflect 

the characteristics specified by the text input. In 

other words, the text guides the generation to 

produce music that aligns with the content, mood, 

or style described in the prompt. The original 

MusicGen also supports melody conditioning, 

which allows longer generations and adding or 

removing certain attributes of the music from the 

original one. The scope of this paper, however, 

excludes the usage of melody conditioning by 

concentrating on textual guidance. More 

information about melody conditioning can be 

found in the original MusicGen paper [3]. 

3. The usage of a transformer model, which handles 

the long-term dependencies in the music structure, 

ensuring that the generation of each next note is 

firmly dependent on the previous notes. Due to the 

attention mechanism [16], transformer models 

weigh the importance of all tokens in a sequence 

when generating a representation for each next 

token. Unlike RNNs, transformers access tokens in 

all positions simultaneously, enabling the model to 

capture the global meaning of the sequence. 

 
The beautiful trick behind MusicGen is converting 

the long, continuous audio representation into a low 
frame and discrete sequence of tokens, then modeling 
the resulting sequential data with a decoder transformer 
model. MusicGen uses an EnCodec audio tokenizer 
model developed by Meta AI [15], that contains three 
main components: encoder, quantizer, and decoder. 
The encoder shifts the audio from continuous domain 
to discrete representation, the quantizer reduces the 
frame rate even further, while the decoder reconstructs 
the low frame discrete representation into the original 
audio with high fidelity. 

B. EnCodec Audio Compression Model 

The architecture of the EnCodec model consists of 
an encoder-decoder neural network architecture with its 
latent space quantized using the residual vector 
quantization (RVQ) technique. Additionally, it uses a 
lightweight transformer model over the quantized units 
which reduces bandwidth even further resulting in a 
compression of the resulting representation by up to 
40% [15]. The whole structure is trained in an end-to-
end manner. Figure 1 shows the full architecture 
containing the details for training.  

 

 

Fig. 1: EnCodec an encoder decoder codec architecture .
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Fig. 2:  Encoder part of the EnCodec used in the MusicGen.

In the domain of MusicGen, EnCodec is 
implemented to compress audio data and serve as input 
for the model during the training procedure. The 
example operation is shown in fig. 2 with a sampling 
rate 32,000; a number of codebooks 4; a codebook 
dimension 1024; a codebook size 2048; and a delayed 
pattern. The results show that EnCodec has superior 
performance providing a state-of-the-art approach for 
audio encoding which was used to convert a 1-second, 
32,000 sampling rate audio to 4x50 discrete 
representation reducing the dimension significantly. 
More about EnCodec can be found in the original paper 
[15]. 

C. T5 Text Conditioner 

To be able to pass the information from text to the 
audio generation model, MusicGen suggests either a 
pre-trained text encoder T5 [17] developed by Google, 
a slightly improved, instruction-based encoder model 
called FLAN-T5 [18] which showed a bit better 
performance than T5 in various metrics, or a joint text-
audio representation called CLAP [19].  

The original paper experiments with all three 
options but concludes T5 surpassing the other two, 
which is then used as the main encoder for all 
MusicGen models. Specifically, the T5 base model is 
used for text tokenization, which converts text to a 
matrix of shape (n_tokens, embedding_dimension). 
Embedding dimension in the base model is 768, which 
explains the contextual information of the token in the 
text. To match the default dimension of the EnCodec 
and language model, an additional linear layer is 
applied after the tokenization to shift from 768 to D 
dimension, where D is 1024, 1536, 2048 for the small, 
medium and large models respectively. The figure 3 
shows an example of the whole procedure.  

 

Fig. 3: Text conditioning using T5 Tokenizer and a Linear 
Layer for the MusicGen small model. 

D. Transformer Model 

As mentioned above, the core model is a decoder-
only transformer model. In contexts where the task 
primarily involves generation or autoregressive 
generation, the decoder component of the transformers 
is used. The model contains L layers and dimension D, 
which both depend on the size of the model. For the 
small, medium, and large models, L is 24, 48, 48 and D 
is 1024, 1536, and 2048 respectively. Each layer is 
composed of a causal self-attention block and several 
linear layers with layer normalizations. It then uses a 
cross-attention block that receives input from the 
conditioning signal C, which stands for the 
representation acquired from T5. 
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IV. OUR METHOD 

A. General Modifications 

For some reason, the number of parameters 
provided in the paper does not match the actual number 
of trainable parameters for the models. Table 1 
provides the submitted parameters and the actual 
number of trainable parameters. Such heavy, large-
scale models are hard to train due to their 
computational demands and time requirements. The 
sheer number of parameters in these models 
necessitates extensive computational resources. 

 

Table 1: Parameters provided in the paper vs. actual parameters 
of the model for LM model only. 

Moreover, training such models often involves 
prolonged periods, ranging from days to weeks, 
depending on factors such as dataset size, model 
architecture, and available computing power. 
Additionally, optimizing hyper-parameters and 
conducting experiments to fine-tune the model further 
extend the training time. Such conditions underscore 
the importance of efficient implementation and 
infrastructure to accelerate the training process, making 
it more accessible to researchers and practitioners. 
Loading the complete model with all three blocks has 
huge memory requirements (see Table 2). 

 

 

Table 2: The memory consumption by each model when 
loading, 30-second music generation and training on 8 GB GPU. 

We simplified the training pipeline to make training 
more accessible which reduces computational 
complexity by enabling the system to allocate resources 
more efficiently. This will further facilitate faster 
training and optimization of the model. In the original 
implementation, the dataset expects 30-second music 
files and their corresponding information in the 
dictionary saved as a JSON format. In each iteration, 
music files are read and preprocessed with EnCodec, 
also, JSON files are read, tokenized, and embedded 
using T5 Tokenizer (see figures 2 and 3). The training 
pipeline exhibits redundancy by loading and processing 

the same text and encoding the same audio data in 
every training step. The repetitive processing of 
identical data introduces unnecessary computational 
overhead and inefficiency into the training process. 
Thus, we can eliminate the need to repeat these 
computations in every epoch by precomputing and 
caching the encoded text and compressed audio 
representations before training begins (see Figure 4). 
The optimization not only accelerates the training 
process but also saves memory by excluding the need 
to load T5 and EnCodec.  

 

Fig. 4: The training pipeline of the original MusicGen vs. our 
implementation. 

We created a new data class that would expect 
preprocessed files instead of the raw music files and 
JSON attributes. The preprocessing step was done 
before starting the training process and the 
corresponding preprocessed files were saved in a 
separate folder. One important difference is that the 
original implementation randomly chooses 30-second 
chunks from a randomly selected track for training, 
while our method extracts fixed 30-second portions 
from each track. 

Note: It is important to note that the original code 
applies token-level dropout to the descriptions during the 
training process before preprocessing the files. In other 
words, in each iteration, each word has a certain probability 
of being omitted from the description during the iteration 
and only after that they are prepared. This technique adds 
regularization to prevent overfitting. However, our method 
would make it impossible to implement, since we save 
already preprocessed files. To have something similar to 
that, we chose to drop out the embeddings of each token with 
the same logic. Nevertheless, this option is not the same as 
the original one since embeddings contain information about 
the context of the whole sentence, and removing an 
embedding of a certain word doesn’t mean that the 
information of that word is fully removed from the sentence. 

To illustrate the changes on the small model of 
MusicGen, we calculated the number of parameters 
before and after the changes, as well as computed the 
average training time for an epoch with our method for 
the small model. From the 420 million parameters, the 
transformer model itself accounts for roughly 402 
million. Additionally, the T5-base model contains 220 
million parameters. So, in total of 238 out of 640 
million is not loaded with the modification. A 10,000 
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iteration through the data on the small model with 
original implementation takes about 110 minutes, while 
our model decreased that number up to 70 minutes. We 
additionally added a feature to freeze layers up to the 
N-th layer in case there is lesser computational power 
available. 

B. Dataset 

The data preparation requires special attention. It 
has been revealed through various experiments that the 
data collection process requires the most careful 
approach. Unfortunately, the original documentation 
does not include examples of descriptions from the 
training dataset. The only option was to compare the 
collected descriptions with the data included in the 
MusicCaps dataset which was used for one of the 
benchmarks in the paper. It contains 5,521 music 
examples, each of which is labeled with a free text 
caption written by musicians. The annotations were 
very detailed, done by experts, whose knowledge we 
didn’t possess. Additionally, we had limited human 
resources and could not allocate months for data 
labeling. To make the process realistic for us, we used 
an automatic music labeling library called Essentia. 
Specifically, the checkpoints predicting the mood, 
genre, and instruments using classification. However, 
we still couldn’t rely solely on its predictions because 
they were poor in some cases, originating a need to 
exclude some classes from the list. Another major 
limitation represents the models’ inability to detect 
Armenian instruments and certain genres because it 
was not trained on examples containing Armenian 
compositions. It even did not contain the classes for the 
most common Armenian instruments. The mood, on 
the other hand, is mostly universal and is applicable to 
any type of music. Dialogue with Armenian music 
expert Artur Avanesov showed that labeling Armenian 
music genres is a harder task than we thought, besides 
that, Essentia did not hesitate to label all music samples 
incorrectly as classical music compositions. Thus, 
instruments are either provided explicitly and/or 
predicted by Essentia, genre is provided manually and 
mood is predicted fully using Essentia. It should be 
noted that predictions are done not on the full track, but 
on trimmed 30-second clips. To have more accurate 
descriptions, we exploited three different types of 
descriptions: 

 Default_description: A hard-coded description 
with the same, default structure where genres, 
instruments and moods are passed to 
placeholders.  

 Creative_description: Genres, instruments, 
and moods are given as a prompt to the Falcon 
1B instruct model that is given an instruction to 
generate a creative description. 

 Manual_description: A description given by 
the user, fully manual, to the music piece. 

Shorter descriptions are all padded up and longer 
ones are shortened down to the length of 55 tokens. All 
three descriptions are processed and saved in a single 
file with three dimensions, e.g. (3, 55, 1024). When 
accessing an element from the dataset class, the file is 
loaded and a random processed description is taken for 
training. The usage of three different descriptions for 
the same output introduces a mix of regularization and 
data augmentation. Examples of the descriptions used 
can be found here. 

The dataset contains 62.8 hours of raw data 
extracted from YouTube. To increase the samples in 
the dataset, the clipping was done with overlapping 
portions with a 15-second sliding window. The final 
training dataset consists of 14,637 clips, all 30-seconds 
long, resulting in roughly 120 hours of music. We also 
convert the stereo examples to mono. More information 
about how to extract data and prepare it can be found 
here. 

C. Data Analysis 

The magnitude of our data is relatively small 
compared to the original dataset collected by Meta AI. 
MusicGen was trained on 20K hours of licensed music 
with about 10K high-quality music tracks and 390K 
instrument-only music extracted from Shutterstock and 
Pond5 [3]. While some generations, for instance, piano 
or violin music, can be easily learned with small data 
due to fine-tuning, as the original data contained a 
bunch of such examples, learning from scratch some 
specific Armenian instruments like duduk, tar or 
kamancha would be problematic with little data. Figure 
5 shows the most frequent instruments, moods, and 
genres appearing in the data, suggesting their potential 
efficacy in achieving the desired results. 

  

Fig. 5: Most frequent appearing instruments, moods and genres 
in the dataset.  

https://essentia.upf.edu/essentia_python_tutorial.html
https://anmmedia.am/en/musician/arthur-avanesov/3
https://huggingface.co/ericzzz/falcon-rw-1b-instruct-openorca
https://huggingface.co/ericzzz/falcon-rw-1b-instruct-openorca
https://github.com/HrayrMuradyan/MusicGeneration/tree/main/additional_tools/youtube_music_links/train
https://github.com/HrayrMuradyan/MusicGeneration/blob/main/additional_tools/documentations/Data%20Documentation.pdf
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Additionally, it is important to note that supremacy 
of a specific label and the overall imbalance in either of 
the categories can introduce bias for the model due to 
the small amount of data. Moreover, note that most 
compositions are not instrument-only, but contain mix 
of various instruments. 

D. Training 

The term “epoch” in the MusicGen implementation 
does not refer to a complete iteration over the entire 
training set. Instead, another parameter called 
updates_per_epoch specifies the number of batch-sized 
iterations through the training set during each epoch. 
We trained the MusicGen small model on a Nvidia 
GeForce RTX 4070 TI Super with 16 GB memory. 
Every training is very expensive that’s why we didn’t 
play around with the hyper-parameters that much and 
most of them were left as they are. We followed the 
same training pattern as the MusicGen paper suggested, 
with the first 10 epochs trained using the AdamW 
optimizer with a learning rate of 10-4, then using the 
Dadam [20] optimizer by Meta AI. An additional 6 
epochs were trained using the Dadam optimizer. A 
batch-size of 6 is taken with 10,000 updates per epoch, 
meaning that each epoch iterated over the whole 
dataset approximately 4 times. 

V. RESULTS 

Our model is evaluated using a subjective metric. 
We questioned human evaluators about the overall 
quality of the generation and its relevance to the text 
input. Each rater was provided with the same 4 prompts 
taken from the validation set, where for each prompt 
there are three categories:  

 Our model generation conditioned on the prompt, 

 MusicGen generation conditioned on the prompt, 

 The original track corresponding to that prompt. 

 

Thus, each evaluator provided feedback about 12 music 

samples. For both our model and MusicGen, we took 

the first immediate generation. Each category was 

provided randomly, in different orders and in a blind 

manner, meaning that the evaluators were not aware of 

the existing groupings. Additionally, they were 

required to submit a rating of how closely they think 

the prompt aligns with the generations and the original 

track. Moreover, we provided prompts indicating 

different genres, moods, and instruments. The rating 

scale ranged from 1 to 5 for both metrics, where 5 is 

the highest positive rating and 1 is the lowest negative 

one. In total 43 people with various backgrounds and 

understanding in music took part in the evaluation 

process providing 1,012 responses. Our model 

provided rewarding results with about 3.84 quality 

rating and 3.96 relevance rating. Table 3 shows the 

results averaged for each respondent and sample. 

Model/Test Quality Relevance 

MusicGen 3.2 3.173 

Our Model 3.845 3.958 

Original 4.14 4.158 

 

Table 3: The average of the ratings provided by the evaluators 
for our model, MusicGen and original composition. 

The evaluation of the MusicGen model suggests that it 

did not have enough examples from Armenian 

compositions in the training set, which resulted in the 

absence of proper understanding of Armenian 

instruments and style. In contrast, the fine-tuned model 

emerged as a notable improvement over the original 

MusicGen model. The incorporation of Armenian-

style music enabled the model to generate better 

quality music, being closer to the original 

compositions standing as the human baseline. It is also 

worth noting that our model’s performance converges 

to the results provided in the MusicGen paper [3], 

where the small MusicGen model got on average 3.96 

quality rating and 4.05 relevance rating.  

 

VI. DISCUSSION 

A. Further Directions 

The experiment provides much room for discussion. 
The limitation provided by MusicGen official paper is 
the absence of detailed control over how closely the 
output should match the instructions provided. 
Additionally, it discusses the ethical concerns 
connected to the dataset acquisition and an unfair 
competition for artists due to inclusion of generative 
models. These are, certainly, open problems that need 
careful attention. Another further research direction 
that can be a nice feature to have, is to be able to 
weight training samples highlighting compositions that 
are particularly admired by a broad audience. In other 
words, there are compositions that are widely revered 
by a large number of people, containing melodic 
beauty, harmonic richness or structural mastery, while 
some examples have lower quality and fail to attract 
listeners. By assigning weights to compositions, the 
model could prioritize learning from popular and 
esteemed pieces, potentially leading to the generation 
of music that resonates deeply with audiences, feels 
genuine, expressive, and emotionally compelling. This 
approach holds promise for improving the model's 
ability to create compositions that capture the essence 
of beloved musical works. 

B. Limitations Of Our Work 

While our music generation model has successfully 
achieved the aims outlined in the paper, we want to 
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stress several limitations to be addressed in the further 
experiments. Firstly, the most significant constraint is 
the labeling of the dataset used for training. While we 
tried to maximize the quality of the labels with the 
resources we had, our knowledge for labeling complex 
musical compositions was too little. Because of that, 
the labels turned out to be too general, introducing 
learning biases or overlook nuances that affected the 
model’s learning process. This further degraded the 
ability of the model to align deeply with the desired 
creative vision provided by the text. Therefore, 
addressing issues related to labeling quality is essential 
for enhancing the text-conditioned control of music 
generation. Armenian music is complex and 
encompasses a wide range of styles, genres and 
especially influences. Better labeling could be achieved 
by involving multiple experts with sufficient musical 
knowledge in the process, ensuring well-informed and 
well-detailed descriptions. Unfortunately, we didn’t 
have those resources. Secondly, despite our best efforts 
to collect a moderate size dataset, there was little 
amount of data available on the internet. While we 
fine-tuned the MusicGen model, some instruments 
were still new for the model and it had to learn their 
sound from scratch. Addressing these limitations will 
be crucial for advancing the capabilities of our music 
generation model and ensuring its relevance and 
effectiveness in diverse musical contexts. Additionally, 
it is critical to mention that while the MusicGen 
development team had an agreement with Shutterstock 
for using their data, we had no proper authorization to 
use YouTube’s data. Scraping data from YouTube 
raises ethical considerations due to potential violations 
of terms of service and copyright regulations, since 
some compositions may be protected. Thus, future 
researchers should prioritize the development of more 
robust labeling methodologies and the expansion of 
datasets to encompass a broader spectrum of musical 
styles, enabling the model to further refine its 
understanding and creativity in music generation tasks, 
as well as follow the ethical guidelines to ensure they 
have the authority to use the data under the hand.  

VII. CONCLUSION 

We fine-tuned MusicGen for text-conditioned 
Armenian music generation that has yielded promising 
results, aligning with the objectives outlined in this 
paper. By successfully producing a generational model, 
we have taken a significant step towards preserving and 
promoting the rich musical heritage of Armenian 
music. Additionally, our contribution serves as a 
foundational baseline in the emerging field of 
Armenian generative music, as one of the first steps in 
the domain. Moreover, our study also reveals certain 
limitations and directions for further research. 
Enhancing the quality and diversity of the dataset 
through the allocation of additional resources stands 
out as a major step towards further improving the 

efficiency of the Armenian music generation model and 
contributing to the broader landscape of computational 
creativity in music composition. The significance of 
this research extends beyond its technical 
achievements. Ultimately, our work underscores the 
potential of artificial intelligence to contribute 
meaningfully to the preservation and innovation of 
cultural musical traditions. Lastly, we want to thank the 
developers of the MusicGen for their amazing 
contribution and open-source codes. 
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