
1

Efficiently Fine-Tuning MusicGen For Text

Conditioned Armenian Music Generation

Author: Hrayr Muradyan

BS in Data Science

American University of Armenia

Supervisor: Karlos Muradyan

Masters in Data Science

University of British Columbia

Composing music is traditionally a realm of human
creativity, intuition, and emotion. However, recent
advancements in deep learning algorithms have opened
directions for the exploration of automated music
generation. The primary objective of this research is to
create a generative AI model capable of producing
moderate sounding compositions that resonate with the
cultural nuances of Armenia. We seek to expand the
realm of creative possibilities in Armenian music
composition and to contribute to the preservation and
promotion of Armenian cultural heritage. We employ
the MusicGen model for text-to-music generation with
efficient implementation of the training pipeline,
significantly enhancing both speed and memory
utilization. The MusicGen small checkpoint is fine-
tuned on a musical corpus of 62.8 hours of Armenian
music extracted from the internet. The results were
satisfactory where the human evaluators provided on
average a rating of 3.84 points from 5 regarding the
generated music quality and 3.96 points from 5
concerning the relevance of the given text condition to
the generation, indicating the model’s ability to
generate adequate sounding Armenian compositions
aligning with the textual descriptions provided to the
model. By pioneering the development of an advanced
music generation model for Armenian music, we not
only showcase the potential of artificial intelligence in
creative domains but also foster Armenian, cultural
appreciation and innovation.

Keywords—MusicGen, Generative AI, Armenian

Music Generation, Transformers, Music.

I. INTRODUCTION

A. Background

Music stands as a profound expression of emotion,
culture, and innovation. It is a universal language that
went through civilizations with countless
transformations. From the invention of musical
notation in the ancient past to the rise of digital
recording and distribution in the modern age, the way
people create, listen, and interact with music has
progressed significantly. Armenian music, deeply
rooted in the country's rich cultural heritage, reflects a
blend of indigenous folk traditions coming from the far
past. Traditional Armenian music often features
emotive melodies played on instruments like duduk,
kanon, and zurna, evoking emotions ranging from joy

to sorrow. In modern times, Armenian music has
diversified, incorporating contemporary genres like
pop, rock, and jazz, while still maintaining its distinct
identity and remaining a vibrant expression of the
nation's culture.

B. Artificial Intelligence and Music Generation

The process of creating music, which is traditionally
an art form deeply rooted in human creativity, intuition,
and emotion, has emerged in recent years in the field of
artificial intelligence. Deep Learning, in this case,
requires special attention, which remarkably outstands
traditional machine learning algorithms by the ability to
automatically discover complex patterns and
relationships within data. Over the past few years, the
field of deep learning experienced a sharp evolution
bringing groundbreaking advancements and various
applications in different domains such as voice
recognition, translation, and text-to-speech analysis [1].
The rapid development made algorithms reach into
unprecedented realms that previously seemed
unrealistic to achieve. One such example is a branch of
artificial intelligence focused on creating new data or
content that never existed before, called Generative AI,
which primarily utilizes deep learning algorithms that
proved to be particularly prominent in this field. The
process of creating music using deep learning, which is
known as music generation, appeared first in the late
1980s as one of the very first efforts to use artificial
neural networks in the field [1].

C. Domains For Music Generation

The two most common music generation domains
include symbolic and waveform music generation. [2]
Symbolic music is represented as discrete data; such as
sequences of musical notes or events. The format of
symbolic music is standardized and can be easily
shared and interpreted by musicians. Waveform music
generation refers to the process of creating audio
waveforms directly, which represents sound in a
continuous domain. While symbolic music is used for
music production, controlling stage effects in live
performances and studio recordings, the waveform
format is commonly used in sound design for film,
television, and multimedia projects. People most
commonly interact with waveform music, thus,
waveform generation is preferable for daily or
commercial uses.

2

D. Deep Learning

As mentioned earlier, deep learning models can
automatically learn complex relationships in the dataset
and uncover patterns that are not directly observable.
The motivation lies in using modern neural network
architectures to train a model on a huge musical corpus
to automatically learn musical styles which can
subsequently be used to generate new compositions.
An abstract music generation model would generate a
music piece given certain conditions. The algorithm
then will iteratively adjust its internal parameters to
minimize the difference between its prediction and the
original music. This optimization process is guided by
a loss function, which quantifies the discrepancy
between the generated music and the actual
composition. Techniques such as transfer learning,
where pre-trained models are fine-tuned on new tasks,
can further accelerate the adoption of a deep learning
model by alleviating the need for large amounts of
labeled data. However, it’s not all smooth sailing - the
music generation task is full of challenges and
limitations.

E. Challenges and Limitations

Firstly, generating music requires modeling long

range sequences [3]. Music is inherently sequential

with melodies and harmonies unfolding over time.

Thus, each note depends on the previous notes in an

autoregressive manner and it is crucial to capture the

long-form relationship between notes.

Secondly, unlike speech, music requires the

operation of full frequency information [4]. Human

perception is very sensitive to music structure and

things that do not sound right together are easily

noticed. [6] According to Nyquist sampling theorem

[5], in order to accurately reconstruct a continuous

signal, it must be sampled at a rate at least twice the

highest frequency present in the signal. This indicates

that in order to fully capture the range of frequencies

in music recordings, a higher sampling rate is

necessary. While 16 kHz sampling rate is considered

more than enough for speech recordings, music

samples need closer to 44.1 kHz or 48 kHz, to ensure

that they can accurately represent the complex

harmonies and melodies [3]. The fact that music

recordings need higher sampling rates raises another

two important complications.

The sampling rate is the number of data points of a

continuous signal that are taken per second to

represent the original analog signal in a digital format

[4]. Thus, a three-minute recording of a 48 kHz

sampling rate will have 8.64 million data points. The

large amount of information that is to be processed

requires significant computational power and memory

resources. Additionally, more sophisticated model

architectures and training strategies have to be

implemented to effectively learn the high-dimensional

music data. The second point refers to the availability

of high quality data and the potential increase in the

size of the audio files. Storing high sampling rate

audio files requires more disk space compared to lower

sampling rates and collecting particularly high-quality

data can create some difficulties due to lack of

availability and high cost.

F. Our Contribution

In this work, we fine-tune the recent MusicGen
model developed by Jade Copet et al. for Meta AI [3]
with several modifications for better efficiency.
MusicGen is a state-of-the-art and powerful model for
music generation based on a single language model.
We use Armenian music of different genres, moods,
and instruments for fine-tuning the model. Our task is
to achieve a generative model that is able to compose
moderate-sounding Armenian music controlled by a
text, which can expand creative possibilities and
promote the rich musical heritage evolution into the
future, as well as be the starting point for encouraging
researchers to concentrate particularly on Armenian
music generation.

II. LITERATURE REVIEW

A. History Of Music Generation

The history of music generation is well described in
[1]. According to the article, one of the first known
cases, even before computers, was attributed to Mozart.
The piece of music was created by concatenating
randomly chosen pieces of music that were selected by
throwing a dice. Computer-based generation started in
the late 1950s using probabilistic models like Markov
chains and other filtering methods for achieving desired
output.

B. One Of The First Deep Learning Models

Peter Todd was one of the first researchers to make
use of neural networks for music generation in 1989
[7]. The paper implemented two different three-layer
sequential networks that were supposed to learn certain
aspects of musical structure from a chosen dataset of
musical examples, enabling it to then generate new
pieces based on the acquired knowledge. Both
networks were designed to exactly recreate the given
set of musical examples suggesting that the network
has learned the musical structure. The first method
involved using time-windowed generations,
sequentially by providing the first window as the input
to the second window generation. The second method
was closer to recurrent network architecture where the
input was divided into memory and a plan guiding the
network’s actions by identifying the specific sequence
being learned or generated.

3

C. Modern Deep Learning Models

Modern deep learning algorithms for music
generation can be separated into three main stages:

1. The first stage of modern music generation

algorithms includes implementing recurrent neural

networks (RNN, LSTM, GRU) for music

generation. For years, recurrent neural networks

were state-of-the-art approaches for modeling

sequential data [8, 9]. However, they all struggle to

retain information over very long sequences.

2. The second stage refers to the deployment of

Variational AutoEncoders (VAEs) or Generative

Adversarial Networks (GANs) for music

generation. MidiNet [10] and MuseGAN [11] are

some of the most cited examples of symbolic

music generation using GANs. MIDI-Sandwich2 is

a mix of RNNs and VAE networks for multi-track

symbolic music generation. [12]

3. The third stage is the application of transformers in

the music domain. Transformers architecture

surpassed previous architectures in various

sequential data benchmarks and applications. The

usage of transformer-based language models is

very popular nowadays in music generation due to

its unique attention-based mechanism that learns

long-term relationships between the time steps. [3,

13, 14]

III. MUSICGEN

A. About MusicGen

MusicGen is a single language model trained for
conditional music generation. [3] It provides three
available versions: Small, Medium, and Large. The
general architecture is the same for all with several
modifications in the number of layers and specific layer
dimensions. The results show that MusicGen provides
satisfactory results showing outperforming results in
various benchmarks. The supremacy of MusicGen is
defined by its three main building blocks:

1. The use of the modern audio tokenizer model

which allows the model to curtail the long,

continuous audio representations into short,

discrete representations that enable the usage of

transformers. This means that instead of dealing

with high-dimensional data, it converts the audio

signal into a more compact and structured

representation. This approach significantly reduces

the computational power for processing audio,

while still retaining enough information to capture

the essential musical features.

2. Being able to be conditioned both by text and

melody. This means that given a textual description

that matches an audio, generation aims to reflect

the characteristics specified by the text input. In

other words, the text guides the generation to

produce music that aligns with the content, mood,

or style described in the prompt. The original

MusicGen also supports melody conditioning,

which allows longer generations and adding or

removing certain attributes of the music from the

original one. The scope of this paper, however,

excludes the usage of melody conditioning by

concentrating on textual guidance. More

information about melody conditioning can be

found in the original MusicGen paper [3].

3. The usage of a transformer model, which handles

the long-term dependencies in the music structure,

ensuring that the generation of each next note is

firmly dependent on the previous notes. Due to the

attention mechanism [16], transformer models

weigh the importance of all tokens in a sequence

when generating a representation for each next

token. Unlike RNNs, transformers access tokens in

all positions simultaneously, enabling the model to

capture the global meaning of the sequence.

The beautiful trick behind MusicGen is converting

the long, continuous audio representation into a low
frame and discrete sequence of tokens, then modeling
the resulting sequential data with a decoder transformer
model. MusicGen uses an EnCodec audio tokenizer
model developed by Meta AI [15], that contains three
main components: encoder, quantizer, and decoder.
The encoder shifts the audio from continuous domain
to discrete representation, the quantizer reduces the
frame rate even further, while the decoder reconstructs
the low frame discrete representation into the original
audio with high fidelity.

B. EnCodec Audio Compression Model

The architecture of the EnCodec model consists of
an encoder-decoder neural network architecture with its
latent space quantized using the residual vector
quantization (RVQ) technique. Additionally, it uses a
lightweight transformer model over the quantized units
which reduces bandwidth even further resulting in a
compression of the resulting representation by up to
40% [15]. The whole structure is trained in an end-to-
end manner. Figure 1 shows the full architecture
containing the details for training.

Fig. 1: EnCodec an encoder decoder codec architecture .

4

Fig. 2: Encoder part of the EnCodec used in the MusicGen.

In the domain of MusicGen, EnCodec is
implemented to compress audio data and serve as input
for the model during the training procedure. The
example operation is shown in fig. 2 with a sampling
rate 32,000; a number of codebooks 4; a codebook
dimension 1024; a codebook size 2048; and a delayed
pattern. The results show that EnCodec has superior
performance providing a state-of-the-art approach for
audio encoding which was used to convert a 1-second,
32,000 sampling rate audio to 4x50 discrete
representation reducing the dimension significantly.
More about EnCodec can be found in the original paper
[15].

C. T5 Text Conditioner

To be able to pass the information from text to the
audio generation model, MusicGen suggests either a
pre-trained text encoder T5 [17] developed by Google,
a slightly improved, instruction-based encoder model
called FLAN-T5 [18] which showed a bit better
performance than T5 in various metrics, or a joint text-
audio representation called CLAP [19].

The original paper experiments with all three
options but concludes T5 surpassing the other two,
which is then used as the main encoder for all
MusicGen models. Specifically, the T5 base model is
used for text tokenization, which converts text to a
matrix of shape (n_tokens, embedding_dimension).
Embedding dimension in the base model is 768, which
explains the contextual information of the token in the
text. To match the default dimension of the EnCodec
and language model, an additional linear layer is
applied after the tokenization to shift from 768 to D
dimension, where D is 1024, 1536, 2048 for the small,
medium and large models respectively. The figure 3
shows an example of the whole procedure.

Fig. 3: Text conditioning using T5 Tokenizer and a Linear
Layer for the MusicGen small model.

D. Transformer Model

As mentioned above, the core model is a decoder-
only transformer model. In contexts where the task
primarily involves generation or autoregressive
generation, the decoder component of the transformers
is used. The model contains L layers and dimension D,
which both depend on the size of the model. For the
small, medium, and large models, L is 24, 48, 48 and D
is 1024, 1536, and 2048 respectively. Each layer is
composed of a causal self-attention block and several
linear layers with layer normalizations. It then uses a
cross-attention block that receives input from the
conditioning signal C, which stands for the
representation acquired from T5.

5

IV. OUR METHOD

A. General Modifications

For some reason, the number of parameters
provided in the paper does not match the actual number
of trainable parameters for the models. Table 1
provides the submitted parameters and the actual
number of trainable parameters. Such heavy, large-
scale models are hard to train due to their
computational demands and time requirements. The
sheer number of parameters in these models
necessitates extensive computational resources.

Table 1: Parameters provided in the paper vs. actual parameters
of the model for LM model only.

Moreover, training such models often involves
prolonged periods, ranging from days to weeks,
depending on factors such as dataset size, model
architecture, and available computing power.
Additionally, optimizing hyper-parameters and
conducting experiments to fine-tune the model further
extend the training time. Such conditions underscore
the importance of efficient implementation and
infrastructure to accelerate the training process, making
it more accessible to researchers and practitioners.
Loading the complete model with all three blocks has
huge memory requirements (see Table 2).

Table 2: The memory consumption by each model when
loading, 30-second music generation and training on 8 GB GPU.

We simplified the training pipeline to make training
more accessible which reduces computational
complexity by enabling the system to allocate resources
more efficiently. This will further facilitate faster
training and optimization of the model. In the original
implementation, the dataset expects 30-second music
files and their corresponding information in the
dictionary saved as a JSON format. In each iteration,
music files are read and preprocessed with EnCodec,
also, JSON files are read, tokenized, and embedded
using T5 Tokenizer (see figures 2 and 3). The training
pipeline exhibits redundancy by loading and processing

the same text and encoding the same audio data in
every training step. The repetitive processing of
identical data introduces unnecessary computational
overhead and inefficiency into the training process.
Thus, we can eliminate the need to repeat these
computations in every epoch by precomputing and
caching the encoded text and compressed audio
representations before training begins (see Figure 4).
The optimization not only accelerates the training
process but also saves memory by excluding the need
to load T5 and EnCodec.

Fig. 4: The training pipeline of the original MusicGen vs. our
implementation.

We created a new data class that would expect
preprocessed files instead of the raw music files and
JSON attributes. The preprocessing step was done
before starting the training process and the
corresponding preprocessed files were saved in a
separate folder. One important difference is that the
original implementation randomly chooses 30-second
chunks from a randomly selected track for training,
while our method extracts fixed 30-second portions
from each track.

Note: It is important to note that the original code
applies token-level dropout to the descriptions during the
training process before preprocessing the files. In other
words, in each iteration, each word has a certain probability
of being omitted from the description during the iteration
and only after that they are prepared. This technique adds
regularization to prevent overfitting. However, our method
would make it impossible to implement, since we save
already preprocessed files. To have something similar to
that, we chose to drop out the embeddings of each token with
the same logic. Nevertheless, this option is not the same as
the original one since embeddings contain information about
the context of the whole sentence, and removing an
embedding of a certain word doesn’t mean that the
information of that word is fully removed from the sentence.

To illustrate the changes on the small model of
MusicGen, we calculated the number of parameters
before and after the changes, as well as computed the
average training time for an epoch with our method for
the small model. From the 420 million parameters, the
transformer model itself accounts for roughly 402
million. Additionally, the T5-base model contains 220
million parameters. So, in total of 238 out of 640
million is not loaded with the modification. A 10,000

6

iteration through the data on the small model with
original implementation takes about 110 minutes, while
our model decreased that number up to 70 minutes. We
additionally added a feature to freeze layers up to the
N-th layer in case there is lesser computational power
available.

B. Dataset

The data preparation requires special attention. It
has been revealed through various experiments that the
data collection process requires the most careful
approach. Unfortunately, the original documentation
does not include examples of descriptions from the
training dataset. The only option was to compare the
collected descriptions with the data included in the
MusicCaps dataset which was used for one of the
benchmarks in the paper. It contains 5,521 music
examples, each of which is labeled with a free text
caption written by musicians. The annotations were
very detailed, done by experts, whose knowledge we
didn’t possess. Additionally, we had limited human
resources and could not allocate months for data
labeling. To make the process realistic for us, we used
an automatic music labeling library called Essentia.
Specifically, the checkpoints predicting the mood,
genre, and instruments using classification. However,
we still couldn’t rely solely on its predictions because
they were poor in some cases, originating a need to
exclude some classes from the list. Another major
limitation represents the models’ inability to detect
Armenian instruments and certain genres because it
was not trained on examples containing Armenian
compositions. It even did not contain the classes for the
most common Armenian instruments. The mood, on
the other hand, is mostly universal and is applicable to
any type of music. Dialogue with Armenian music
expert Artur Avanesov showed that labeling Armenian
music genres is a harder task than we thought, besides
that, Essentia did not hesitate to label all music samples
incorrectly as classical music compositions. Thus,
instruments are either provided explicitly and/or
predicted by Essentia, genre is provided manually and
mood is predicted fully using Essentia. It should be
noted that predictions are done not on the full track, but
on trimmed 30-second clips. To have more accurate
descriptions, we exploited three different types of
descriptions:

 Default_description: A hard-coded description
with the same, default structure where genres,
instruments and moods are passed to
placeholders.

 Creative_description: Genres, instruments,
and moods are given as a prompt to the Falcon
1B instruct model that is given an instruction to
generate a creative description.

 Manual_description: A description given by
the user, fully manual, to the music piece.

Shorter descriptions are all padded up and longer
ones are shortened down to the length of 55 tokens. All
three descriptions are processed and saved in a single
file with three dimensions, e.g. (3, 55, 1024). When
accessing an element from the dataset class, the file is
loaded and a random processed description is taken for
training. The usage of three different descriptions for
the same output introduces a mix of regularization and
data augmentation. Examples of the descriptions used
can be found here.

The dataset contains 62.8 hours of raw data
extracted from YouTube. To increase the samples in
the dataset, the clipping was done with overlapping
portions with a 15-second sliding window. The final
training dataset consists of 14,637 clips, all 30-seconds
long, resulting in roughly 120 hours of music. We also
convert the stereo examples to mono. More information
about how to extract data and prepare it can be found
here.

C. Data Analysis

The magnitude of our data is relatively small
compared to the original dataset collected by Meta AI.
MusicGen was trained on 20K hours of licensed music
with about 10K high-quality music tracks and 390K
instrument-only music extracted from Shutterstock and
Pond5 [3]. While some generations, for instance, piano
or violin music, can be easily learned with small data
due to fine-tuning, as the original data contained a
bunch of such examples, learning from scratch some
specific Armenian instruments like duduk, tar or
kamancha would be problematic with little data. Figure
5 shows the most frequent instruments, moods, and
genres appearing in the data, suggesting their potential
efficacy in achieving the desired results.

Fig. 5: Most frequent appearing instruments, moods and genres
in the dataset.

https://essentia.upf.edu/essentia_python_tutorial.html
https://anmmedia.am/en/musician/arthur-avanesov/3
https://huggingface.co/ericzzz/falcon-rw-1b-instruct-openorca
https://huggingface.co/ericzzz/falcon-rw-1b-instruct-openorca
https://github.com/HrayrMuradyan/MusicGeneration/tree/main/additional_tools/youtube_music_links/train
https://github.com/HrayrMuradyan/MusicGeneration/blob/main/additional_tools/documentations/Data%20Documentation.pdf

7

Additionally, it is important to note that supremacy
of a specific label and the overall imbalance in either of
the categories can introduce bias for the model due to
the small amount of data. Moreover, note that most
compositions are not instrument-only, but contain mix
of various instruments.

D. Training

The term “epoch” in the MusicGen implementation
does not refer to a complete iteration over the entire
training set. Instead, another parameter called
updates_per_epoch specifies the number of batch-sized
iterations through the training set during each epoch.
We trained the MusicGen small model on a Nvidia
GeForce RTX 4070 TI Super with 16 GB memory.
Every training is very expensive that’s why we didn’t
play around with the hyper-parameters that much and
most of them were left as they are. We followed the
same training pattern as the MusicGen paper suggested,
with the first 10 epochs trained using the AdamW
optimizer with a learning rate of 10-4, then using the
Dadam [20] optimizer by Meta AI. An additional 6
epochs were trained using the Dadam optimizer. A
batch-size of 6 is taken with 10,000 updates per epoch,
meaning that each epoch iterated over the whole
dataset approximately 4 times.

V. RESULTS

Our model is evaluated using a subjective metric.
We questioned human evaluators about the overall
quality of the generation and its relevance to the text
input. Each rater was provided with the same 4 prompts
taken from the validation set, where for each prompt
there are three categories:

 Our model generation conditioned on the prompt,

 MusicGen generation conditioned on the prompt,

 The original track corresponding to that prompt.

Thus, each evaluator provided feedback about 12 music

samples. For both our model and MusicGen, we took

the first immediate generation. Each category was

provided randomly, in different orders and in a blind

manner, meaning that the evaluators were not aware of

the existing groupings. Additionally, they were

required to submit a rating of how closely they think

the prompt aligns with the generations and the original

track. Moreover, we provided prompts indicating

different genres, moods, and instruments. The rating

scale ranged from 1 to 5 for both metrics, where 5 is

the highest positive rating and 1 is the lowest negative

one. In total 43 people with various backgrounds and

understanding in music took part in the evaluation

process providing 1,012 responses. Our model

provided rewarding results with about 3.84 quality

rating and 3.96 relevance rating. Table 3 shows the

results averaged for each respondent and sample.

Model/Test Quality Relevance

MusicGen 3.2 3.173

Our Model 3.845 3.958

Original 4.14 4.158

Table 3: The average of the ratings provided by the evaluators
for our model, MusicGen and original composition.

The evaluation of the MusicGen model suggests that it

did not have enough examples from Armenian

compositions in the training set, which resulted in the

absence of proper understanding of Armenian

instruments and style. In contrast, the fine-tuned model

emerged as a notable improvement over the original

MusicGen model. The incorporation of Armenian-

style music enabled the model to generate better

quality music, being closer to the original

compositions standing as the human baseline. It is also

worth noting that our model’s performance converges

to the results provided in the MusicGen paper [3],

where the small MusicGen model got on average 3.96

quality rating and 4.05 relevance rating.

VI. DISCUSSION

A. Further Directions

The experiment provides much room for discussion.
The limitation provided by MusicGen official paper is
the absence of detailed control over how closely the
output should match the instructions provided.
Additionally, it discusses the ethical concerns
connected to the dataset acquisition and an unfair
competition for artists due to inclusion of generative
models. These are, certainly, open problems that need
careful attention. Another further research direction
that can be a nice feature to have, is to be able to
weight training samples highlighting compositions that
are particularly admired by a broad audience. In other
words, there are compositions that are widely revered
by a large number of people, containing melodic
beauty, harmonic richness or structural mastery, while
some examples have lower quality and fail to attract
listeners. By assigning weights to compositions, the
model could prioritize learning from popular and
esteemed pieces, potentially leading to the generation
of music that resonates deeply with audiences, feels
genuine, expressive, and emotionally compelling. This
approach holds promise for improving the model's
ability to create compositions that capture the essence
of beloved musical works.

B. Limitations Of Our Work

While our music generation model has successfully
achieved the aims outlined in the paper, we want to

8

stress several limitations to be addressed in the further
experiments. Firstly, the most significant constraint is
the labeling of the dataset used for training. While we
tried to maximize the quality of the labels with the
resources we had, our knowledge for labeling complex
musical compositions was too little. Because of that,
the labels turned out to be too general, introducing
learning biases or overlook nuances that affected the
model’s learning process. This further degraded the
ability of the model to align deeply with the desired
creative vision provided by the text. Therefore,
addressing issues related to labeling quality is essential
for enhancing the text-conditioned control of music
generation. Armenian music is complex and
encompasses a wide range of styles, genres and
especially influences. Better labeling could be achieved
by involving multiple experts with sufficient musical
knowledge in the process, ensuring well-informed and
well-detailed descriptions. Unfortunately, we didn’t
have those resources. Secondly, despite our best efforts
to collect a moderate size dataset, there was little
amount of data available on the internet. While we
fine-tuned the MusicGen model, some instruments
were still new for the model and it had to learn their
sound from scratch. Addressing these limitations will
be crucial for advancing the capabilities of our music
generation model and ensuring its relevance and
effectiveness in diverse musical contexts. Additionally,
it is critical to mention that while the MusicGen
development team had an agreement with Shutterstock
for using their data, we had no proper authorization to
use YouTube’s data. Scraping data from YouTube
raises ethical considerations due to potential violations
of terms of service and copyright regulations, since
some compositions may be protected. Thus, future
researchers should prioritize the development of more
robust labeling methodologies and the expansion of
datasets to encompass a broader spectrum of musical
styles, enabling the model to further refine its
understanding and creativity in music generation tasks,
as well as follow the ethical guidelines to ensure they
have the authority to use the data under the hand.

VII. CONCLUSION

We fine-tuned MusicGen for text-conditioned
Armenian music generation that has yielded promising
results, aligning with the objectives outlined in this
paper. By successfully producing a generational model,
we have taken a significant step towards preserving and
promoting the rich musical heritage of Armenian
music. Additionally, our contribution serves as a
foundational baseline in the emerging field of
Armenian generative music, as one of the first steps in
the domain. Moreover, our study also reveals certain
limitations and directions for further research.
Enhancing the quality and diversity of the dataset
through the allocation of additional resources stands
out as a major step towards further improving the

efficiency of the Armenian music generation model and
contributing to the broader landscape of computational
creativity in music composition. The significance of
this research extends beyond its technical
achievements. Ultimately, our work underscores the
potential of artificial intelligence to contribute
meaningfully to the preservation and innovation of
cultural musical traditions. Lastly, we want to thank the
developers of the MusicGen for their amazing
contribution and open-source codes.

VIII. REFERENCES

[1] Briot, J.-P. (2020). From artificial neural
networks to deep learning for music generation:
history, concepts and trends. Neural Computing and
Applications, 33(1), 39–65. doi:10.1007/s00521-020-
05399-0

[2] Vinet, H. (2004). The Representation Levels of
Music Information. In: Wiil, U.K. (eds) Computer
Music Modeling and Retrieval. CMMR 2003. Lecture
Notes in Computer Science, vol 2771. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-540-39900-
1_17

[3] Copet, Jade, et al. Simple and Controllable
Music Generation. arXiv:2306.05284, arXiv, 29 Jan.
2024. arXiv.org, http://arxiv.org/abs/2306.05284

[4] Müller, M. (2015). Fundamentals of Music
Processing. doi:10.1007/978-3-319-21945-5

[5] Colarusso, Pina, et al. “Raman and Infrared
Microspectroscopy.” Encyclopedia of Spectroscopy
and Spectrometry, Elsevier, 1999, pp. 1945–54.
DOI.org, https://doi.org/10.1006/rwsp.2000.0402

[6] Fedorenko E, McDermott JH, Norman-Haignere
S, Kanwisher N. Sensitivity to musical structure in the
human brain. J Neurophysiol. 2012 Dec;108(12):3289-
300. doi: 10.1152/jn.00209.2012. Epub 2012 Sep 26.
PMID: 23019005; PMCID: PMC3544885

[7] Todd, P. M. (1989). A Connectionist Approach
to Algorithmic Composition. Computer Music Journal,
13(4), 27. doi:10.2307/3679551

[8] Mangal, Sanidhya, et al. “LSTM Based Music
Generation System.” IARJSET, vol. 6, no. 5, May
2019. https://doi.org/10.17148/IARJSET.2019.6508

[9] Conner, Michael, et al. Music Generation Using
an LSTM. arXiv:2203.12105, arXiv, 22 Mar. 2022.
arXiv.org, http://arxiv.org/abs/2203.12105

[10] Yang, Li-Chia, et al. MidiNet: A Convolutional
Generative Adversarial Network for Symbolic-Domain
Music Generation. arXiv:1703.10847, arXiv, 18 July
2017. arXiv.org, http://arxiv.org/abs/1703.10847

[11] Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., &
Yang, Y.-H. (2018). MuseGAN: Multi-track Sequential
Generative Adversarial Networks for Symbolic Music

https://doi.org/10.1007/978-3-540-39900-1_17
https://doi.org/10.1007/978-3-540-39900-1_17
http://arxiv.org/abs/2306.05284
https://doi.org/10.1006/rwsp.2000.0402
https://doi.org/10.17148/IARJSET.2019.6508
http://arxiv.org/abs/2203.12105
http://arxiv.org/abs/1703.10847

9

Generation and Accompaniment. Proceedings of the
AAAI Conference on Artificial Intelligence, 32(1).
https://doi.org/10.1609/aaai.v32i1.11312

[12] Liang, Xia, et al. MIDI-Sandwich2: RNN-
Based Hierarchical Multi-Modal Fusion Generation
VAE Networks for Multi-Track Symbolic Music
Generation. arXiv:1909.03522, arXiv, 8 Sept. 2019.
arXiv.org, http://arxiv.org/abs/1909.03522

[13] Ens, Jeff, and Philippe Pasquier. MMM:
Exploring Conditional Multi-Track Music Generation
with the Transformer. arXiv:2008.06048, arXiv, 20
Aug. 2020. arXiv.org, http://arxiv.org/abs/2008.06048

[14] Agostinelli, Andrea, et al. MusicLM:
Generating Music From Text. arXiv:2301.11325,
arXiv, 2023. arXiv.org, http://arxiv.org/abs/2301.11325

[15] Défossez, Alexandre, et al. High Fidelity
Neural Audio Compression. arXiv:2210.13438, arXiv,
2022. arXiv.org, http://arxiv.org/abs/2210.13438

[16] Vaswani, Ashish, et al. Attention Is All You
Need. arXiv:1706.03762, arXiv, 1 Aug. 2023.
arXiv.org, http://arxiv.org/abs/1706.03762

[17] Raffel, Colin, et al. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text
Transformer. arXiv:1910.10683, arXiv, 19 Sept. 2023.
arXiv.org, http://arxiv.org/abs/1910.10683

[18] Chung, Hyung Won, et al. Scaling Instruction-
Finetuned Language Models. arXiv:2210.11416, arXiv,
6 Dec. 2022.arXiv.org, http://arxiv.org/abs/2210.11416

[19] Wu, Yusong, et al. Large-Scale Contrastive
Language-Audio Pretraining with Feature Fusion and
Keyword-to-Caption Augmentation. arXiv, 21 Mar.
2024. arXiv.org, http://arxiv.org/abs/2211.06687

[20] Defazio, Aaron, and Konstantin Mishchenko.
Learning-Rate-Free Learning by D-Adaptation.
arXiv:2301.07733, arXiv, 7 July 2023. arXiv.org,
http://arxiv.org/abs/2301.07733.

https://doi.org/10.1609/aaai.v32i1.11312
http://arxiv.org/abs/1909.03522
http://arxiv.org/abs/2008.06048
http://arxiv.org/abs/2301.11325
http://arxiv.org/abs/2210.13438
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2211.06687
http://arxiv.org/abs/2301.07733

