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Abstract

Accurate segmentation of brain tumors is crucial for correct diagnosis and

treatment planning. U-Net segmentation is one of the most successful

algorithms in medical image analysis. It has been in the list of top solutions

of the BraTS benchmark. This paper does an in-depth analysis of a specific

variation of 3D U-Net algorithm with slight modifications of the algorithm’s

parameters, namely batch size and training–test data quantity ratio. The

data splitted into training and test with ratio 8:2 and batch size 2 (instead

of 1) slightly outperformed the original source algorithm’s result. This is

because the model has more data to learn from and train on. Also, when

training with batch size 2 and concatenating MRI 3D images, the model

can see some general patterns he could not observe with batch size 1.
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1. Introduction

In medical image analysis, where every detail is essential in accurately

diagnosing the patient, the Multimodal Brain Tumor Segmentation (BraTS)

challenge is one of the field’s cornerstones [1]. The BraTS is an

annual challenge to improve automated brain tumor segmentation using

multimodal magnetic resonance imaging (MRI) data. It was first initiated

in 2012, and since it has become one of the standards in medical imaging

analysis, attracting participants worldwide. Participants are provided with

the same medical data and are challenged to develop algorithms with

maximum accuracy for diagnosing brain tumors and their degrees.

Another crucial objective of the challenge is promoting collaboration

and knowledge exchange between researchers worldwide. This challenge

brings together people from diverse backgrounds, such as researchers,

clinicians, and data scientists, who, collaborating and sharing their work,

can eventually reach solutions to complex problems and improve the state

of the art in medical image analysis.

Over the years, the BraTS challenge has encompassed different tasks.

These tasks included brain tumor segmentation in Multiparametric

Magnetic Resonance Imaging(mpMRI) scans, prediction of the

Methylguanine-DNA-methyltransferase(MGMT) promoter methylation

status in mpMRI scans, prediction of patient overall survival, evaluation

of algorithmic uncertainty in tumor segmentations, and much more [2].

This report only concentrates on the task of brain tumor segmentation in

mpMRI scans.

The brain tumor segmentation task includes the segmentation of brain

tumors using multimodal MRI scans and experts provided clinically

acquired data. Algorithms are implemented to have maximally improved

performances and attain machine-generated diagnoses with minimum
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error. The algorithms divide the tumor area into various glioma sub-

regions: “enhancing tumor” (ET), the “tumor core” (TC), and the “whole

tumor” (WT). Participants must upload their segmentation methods using

a standardized method and receive a rank based on standard evaluation

metrics—Dice Score, Hausdorff distance [3].

The BraTS challenge has multiple essential purposes. The BraTS

challenge’s primary purpose is to improve medical imaging analysis in

brain tumor segmentation by benchmarking the performance of different

segmentation algorithms. The challenge enables fair comparison between

various methods since it provides standardized datasets and evaluation

metrics. This way, it encourages the development of innovative algorithms

that can accurately segment brain tumors using MRI scans. The final goal is

to reach improved diagnostic accuracy and better segmentation outcomes.

Another purpose the BraTS challenge follows is to enhance the treatment

process of brain tumors. Generally, the diagnosis of a brain tumor is very

time-and resource-consuming. By getting automated, accurate diagnoses

using the algorithms derived from the BraTS challenge, field professionals

can spend their time- and resources on the treatment rather than the

diagnosis. Moreover, since the best expert board-certified neuroradiologists

label the ground truth data used in the BraTS challenge [1], the challenge

can enable more accurate patient treatment planning. The doctors can better

understand tumors’ size, shape, and location, allowing them to choose the

best-suiting treatment for the given patient.

While hundreds of algorithms have been suggested since the BraTS

benchmark first started in 2012, it’s important to understand what factors

cause improvements/deterioration of the algorithm’s accuracy and how

it can be enhanced. In this paper, several such factors influencing an

algorithm’s performance will be discussed.
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2. Literature Review

2.1 Brain Tumor Segmentation Challenges

The main reason behind the initialization of the BraTS challenge was the

need for a uniform evaluation system for the best computer algorithms

in medical image analysis [1]. The BraTS challenge has had many

different tasks during its existence. When starting in 2012, the BraTS

challenge had one primary goal—to track the current state-of-the-art

multimodal automated brain tumor segmentation and compare different

algorithmic approaches [4]. Over time, the benchmark became more

comprehensive and included more tasks, where the results of the brain

tumor segmentation were used to enable additional research [5]. In 2016,

the participants were asked not only to estimate the size and location of

the tumor but also to predict whether the tumor area is “progressing”,

“shrinking”, or stable [6]. Gradually, the tasks of the challenge became

more complex—in 2017 and 2018, the participants had two distinct tasks—

implement segmentation of gliomas in pre-operative multimodal Magnetic

Resonance Image (MRI) scans and predict patient overall survival (OS)

from pre-operative scans [7] [8]. BraTS 2019 and 2020 extended to

experimentally evaluating the uncertainty in tumor segmentations [2], [9].

Lately, BraTS 2023 and BraTS 2024 include a variety of essential tasks—

including the BraTS Challenge on Relevant Augmentation Techniques,

BraTS Adult Glioma Post Treatment Challenge, and ASNR-MICCAI BraTS

MRI Synthesis Challenge (BraSyn) [10] [11]. However, through time, the

main objective of the benchmark remains to identify the current state-of-

the-art segmentation algorithms for brain gliomas.
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2.2 BraTS Dataset and Its Evolution Since 2012

2.2 BraTS Dataset and Its Evolution Since 2012

The BraTS challenge data has continued growing in size since 2012. In 2012-

13, the BraTS challenge was initiated with around 60 Magnetic Resonance

Image(MRI) scans. The data included both clinical and synthetic records.

The records were also diverse in glioma grades(it had high-grade and low-

grade glioma patients) [1]. The data quantity was rather small in 2012-2013,

however it started growing in 2014-2016 and almost doubled in quantity in

2017. Validation sets were also added in 2017.(Table 2.1)

Clinical data included pre- and post-therapy mpMRI scans from patients

collected over multiple years, utilizing various MR scanners operating

at 1.5T and 3T field strengths, employing diverse scanning protocols

including 2D and 3D imaging techniques [12]. For the synthetic data,

MR images imitating clinical records were generated using TumorSim

software, combining physical and statistical models to simulate the four

subregions of the tumor. The algorithm used anatomical maps from

healthy subjects and introduced variations such as noise and intensity

inhomogeneities to simulate diverse imaging conditions [1]. Although

synthetic data already came with ground truth annotations, the clinical data

must be thoroughly examined and labeled. In order to be able to annotate

different visual structures, a special annotation protocol was established.

Usually, 1-4 domain professionals examined and manually segmented the

data. A 15-year expertise single board-certified neuro-radiologist reviewed

the annotations for maximal accuracy and consistency [5].

Four types of MRI volumes were decided to be used for segmenting the

clinical data. These four types of MRI modalities include [1]:

T1: T1-weighted image, with 1–6 mm slice thickness;

T1c: T1-weighted, contrasted Gadolinium(T1GD) image;

T2: T2-weighted image, with 2–6 mm slice thickness;

T2-FLAIR: T2-weighted FLAIR image, 2–6 mm slice thickness.

Each of these modalities are useful for identifying a different subregion.
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However, it has been shown that the most useful ones in annotations were

T1GD and T2-FLAIR [5].

Another requirement of the annotation protocol was that all modalities’

volumes were to be co-registered to the T1c MRI and resampled to 1mm

isotropic resolution [12]. Also, all scans were skull-striped to guarantee

anonymization of the patients [1].

The tumor subregions defined in the protocol were designed to be

imaged-based rather than biological structures [1]. During 2012-2016 the

annotations were being made for four subregions—“edema”(ED), “non-

enhancing(solid) core/tumor”(NET), “necrotic(or fluid- filled) core”(NCR),

and “enhancing core” or Active Tumor(AT)(Fig. 2.1).

ED describes the peritumoral edematous and invaded tissue that is fairly

easily defined on the T2-weighted images. NET are parts of the high-

grade tumor do not enhance, but they are clearly distinguishable from the

surrounding vasogenic edema. These are the parts used for identifying low

grade gliomas(LGG)(since LGG are quite hard to determine). NET as well is

best identified using T2. NCR describes the necrotic core, and is often cystic.

AT describes the enhancing regions within the gross tumor abnormality, but

not the necrotic center [5].

Figure 2.1: Tumor appearance on three imaging modalities (A = T2-FLAIR,
B = T2, C = T1c) with manual annotations, and fusion of the three labels on
the right (D). From left to right: whole tumor (yellow), tumor core (red),
enhancing tumor structures (light blue), surrounding the cystic/necrotic
components of the core (green). (Reproduced from [12].)

Later in 2017 BraTS challenge changed the annotation protocol to
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2.3 Evaluation Metrics

use three subregions—Whole tumor(WT), Tumor core(TC), and Active

Tumor(AT) [5]. The WT was the union of ED, NET, NCR and AT, and was

best discoverable by T2-Flair. The TC was the union of everything except

the edema, and was best identified using T1GD and T1. AT covers only the

enhancing tumor. [5] [12].

The BraTS dataset has increased heavily over time in size(Table 2.1).

More clinical data annotated by experts have been added to BraTS datasets.

The main objective of the BraTS is to keep this benchmark an open sourced

and continously developing challenge for the scientific community [5].

Year Total data Training data Validation data Testing data Tasks Type of data
2012 50 35 N/A 15 Segmentation Pre-operative only2013 60 35 N/A 25
2014 238 200 N/A 38

(Segmentation Disease progression) Longitudinal2015 253 200 N/A 53
2016 391 200 N/A 191
2017 477 285 46 146 Segmentation Pre-operative only2018 542 285 66 191

Table 2.1: BraTS Data 2012-2018 Summary ([5])

2.3 Evaluation Metrics

The Multimodal Brain Tumor Segmentation Challenge 2020 focused on

detecting tumor sub-regions (ET, TC, WT), predicting patient overall

survival from pre-operative MRI scans, and evaluating uncertainty in

segmentation. The primary evaluation metrics included the Dice Similarity

Coefficient (DSC), which measures overlap by calculating

2×TP
2×TP+FP+FN ,

where TP, FP, and FN represent the number of true positive, false positive,

and false negative voxels, respectively. This metric, insensitive to the

background’s extent, complements the 95th percentile of the Hausdorff

Distance (HD95), detecting maximum contour discrepancies and penalizing

even small outlier errors that could significantly impact clinical outcomes.

Additional metrics used were sensitivity TP/(TP+FN) and specificity

TN/(TN+FP), providing a comprehensive evaluation of the segmentation’s

accuracy on the tumor sub-regions ET, TC, and WT [3], [13].
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2.4 Common Approaches and Algorithms

When the BraTS challenge first landed in 2012, there were only a few

participants, and the results were far from accurate. The number of the

participants and the algorithms increased heavily since then [12].

The algorithms used for brain tumor segmentation usually fall into two

groups—generative and discriminative. The generative algorithms use

domain expert information in order to attain automated segmentations [1].

Pathology, MRI physics, and radiology knowledge are necessary for

correctly implementing image analysis based on intensity and shape.

First, experts identify the regions with the expected features of a healthy

brain. In this case, since MRI images are being used, the process involves

determining the intensity of healthy classes. After defining what intensity

features are considered to be normal, tumors and edema are treated as

intensity abnormalities or outliers. Afterward, unsupervised clustering

techniques are used to determine normal tissues and abnormalities.

Lastly, spatial and geometric properties are used to specify the abnormal

tissues’ location correctly [14]. However, the generative models have

one big limitation—the difficulty of transforming semantic image feature

interpretations into probabilistic models [1]. The discriminative approach

is the other widespread approach that also handles the limitations present

in generative models. The discriminative models do not require prior

domain knowledge. They directly learn the feature differences between

abnormalities and healthy tissues from manually labeled images. The

annotated images later become the ground truth tables for the training

process. Participants need significant amounts of labeled data to obtain

robust and precise results. First, algorithms extract the features for each

voxel from anatomical maps such as MRI images. Then, the algorithms use

these features to implement supervised learning processes(classification)

that return the labeled segmentation maps as outputs per each input image.

One limitation of such algorithms is the annotation protocol used for the

training data that needs to be followed by each input image [1].

One possible solution which avoids the limitations of both discriminative
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2.4 Common Approaches and Algorithms

and generative models is the focus on joint nerative-discriminative

techniques. This approach involves generative component’s probabilistic

models in the preprocessing step and discriminative model’s supervised

algorithms in the main training step [1].

2.4.1 The BraTS Algorithms Through the Years

As mentioned above, in 2012, when the BraTS challenge debuted, the

algorithms’ evaluation scores were relatively low(averaging 0.14-0.70 for

the whole tumor and 0.09-0.37 for the tumor core). 8 out of 12 algorithms

used were fully automated. The trends for the year were Random

Forests (RF) classification, Markov Random Field (MRF), and logistic

regression. In 2012, most of the best performances were observed at

Random Forests [12]. Random forests are ensembles of randomly different

decision trees. Training each decision tree involves adjusting the parameters

of the split function at every node to maximize information gain when

dividing the training data. The testing is executed by pushing each feature

vector through the tree models and testing each split node until a leaf node

is achieved. The algorithm calculates labels by averaging the posteriors of

the leave nodes of all trees. One advantage of random forests is that they can

naturally manage multi-class problems and deliver a probabilistic output

instead of hard-label separations [15].

Compared to 2012, the evaluation score results were much higher in 2013

(average Dice score range of 0.71-0.87 for WT, 0.46-0.78 for TC, and 0.52-

0.74 for ET). Inspired by the success of Random Forests, most participants

in 2013 continued the utilization of these algorithms for the BraTS challenge.

4 participants out of 10 used RF algorithms, and 3 of them were considered

as top solutions. The best-ranked solution was a concatenation of Random

Forest models. During the concatenation, the output of one model served

as an input for the next RF. Binary morphological processing was used as

the final step for the advancement of the labeling results [12].

Summarizing the results of 2012 and 2013, two general patterns are
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observed. First, even though some models performed exceptionally well

for the time, the inter-rater agreement among expert clinicians still showed

better results. Second, despite the accuracy of some individual models, the

concatenated algorithms showed much better performance. They were the

state-of-the-art algorithms during 2012 and 2013 [5]. (Fig. 2.2).

Figure 2.2: Summary results of the BraTS 2012-2013. Label fusion (red
outline) out-performs all individual methods and the inter-rater agreement.
(Reproduced from [1].)

Moving forward to 2014-2016, the scientific community observed a new

tendency in algorithms. Though 4 out of 8 submissions for BraTS 2014

challenge were based on RF-s, Convolutional Neural Networks(CNN) were

introduced then and gained popularity in the field [12].

The CNN uses 3D patches extracted from MRI scans, each representing

a small cube of voxels. Each patch is centered around the voxel to be

classified, capturing local spatial information in three dimensions (x, y, z)

along with the channel data. The algorithm pushes these patches through

multiple layers of 3D convolutional filters. Each convolution layer applies

a set of learned filters and a non-linear activation function, progressively

reducing the spatial dimension but extracting relevant features. The final
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2.4 Common Approaches and Algorithms

convolution layer is equipped with as many filters as there are target classes

(e.g., different tumor types and normal tissue), each filter producing a

spatial map of predictions [16].

In the BraTS 2017 and 2018 challenges, the tendency among the

algorithms submitted was the use of convolutional neural networks

(CNNs), specifically, the majority used U-net inspired models [12].

The U-net network architecture is illustrated in Figure 2.3. It consists of

an encoder (left side) and a decoder (right side). The encoder mainly

reduces the quality of the picture by applying 3 × 3 convolutions, followed

by a rectified linear unit (ReLU), and a 2 × 2 max pooling operation. The

decoder restores the image to its original dimensions by up-sampling. It

does upsampling by applying 2 × 2 convolution that halves the number of

feature channels, a concatenation with the correspondingly cropped feature

map from the contracting path, and two 3 × 3 convolutions, each followed

by a ReLU [17]. U-Net, in contrast to traditional CNN-s, uses feature

concatenation from the encoder and decoder to restore the original size of

the image. [18].

Among the submissions, a significant number utilized CNN

architectures, with 16 models based on U-Net or its variant, V-Net.

These models were broadly used due to their effectiveness in handling

volumetric data, which is crucial for medical image segmentation.

The tendency towards the U-Net and its variations remained after 2017–

2018 as well. The winner algorithm of BraTS 2020 was a very simple

implementation of U-Net, called nnU-Net [19]. First, nnU-Net preprocesses

the input image voxels by normalizing them. The nnU-Net follows a 3D U-

Net-like pattern. It has an encoder and a decoder that are connected by skip

connections. nnU-Net relies on plain convolutions for feature extraction.

Dice loss and cross-entropy loss are used for the training. The model was

trained with a batch size of 2. The model won the BraTS 2020 benchmark

with Dice scores of 0.88, 0.85 and 0.82 and HD95 values of 8.498, 17.337 and

17.805 for whole tumor, tumor core and enhancing tumor, respectively [19].
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Figure 2.3: U-net architecture (example for 32x32 pixels in the lowest
resolution). Each blue box corresponds to a multi-channel feature map. The
number of channels is denoted on top of the box. The x-y-size is provided at
the lower left edge of the box. White boxes represent copied feature maps. The
arrows denote the different operations. (Reproduced from [17].)
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Another successful algorithm that was in the top 10 of BraTS 2020

competition was “Brain tumor segmentation with self-ensembled, deeply-

supervised 3D U-net neural networks”. The model again works based on

a simple U-Net with minor modifications. The model’s architecture can be

found in Figure 2.4. In contrast to nnU-Net, this model trains its data only

using Dice loss and does its encoding in 3 stages. The model achieved a

Dice of 0.79, 0.89 and 0.84, and Hausdorff (95%) of 20.4, 6.7 and 19.5mm on

the final test dataset [3].

Figure 2.4: Neural Network Architecture: 3D U-Net [35] with minor
modifications. (Reproduced from [3].)
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3. Contributions

While researching brain tumor segmentation, I explored many articles

discussing different approaches and algorithms in this field. I decided to

pick an algorithm and experiment with it. My goal was to experiment

by adjusting some parameters within this algorithm. This experiment

would allow me to see how changing factors could impact its effectiveness.

Through this process, I aimed to gain a more profound understanding

of the algorithm’s functionality and explore possibilities for improving its

performance by changing its parameters.

Throughout my research, I observed a tendency in methodologies over

the years towards using deep learning techniques. In Particular, 3D U-

net architecture has shown one of the most successful results. For this

reason, I focused on an algorithm called “Brain tumor segmentation with

self-ensembled, deeply-supervised 3D U-net neural networks”(discussed

in ??) for my investigation. This algorithm was a BraTS 2020 challenge

solution, ranked among the top ten teams [3].

3.1 Data Preprocessing

Officially, registration in the challenge and data requests are needed to

access the authorized datasets of the BraTS challenges. Consequently, due

to the shortage of time, direct access to the official BraTS 2020 dataset

was not available during the course of this study. Therefore, I attained

the equivalent dataset for BraTS 2020 from Kaggle, a widely recognized

platform for data science competitions and datasets. The participants did

not have access to the official testing data and validation ground truth

labels, so the latter was missing in the available dataset. I resolved this

problem by generating an artificial test dataset from the existing training

data. I developed a script that shuffles the training dataset and randomly
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3.2 Evaluation Scores

splits it into training and testing subsets according to a widely used

ratio—80% training dataset and 20% testing dataset.

. This setup prepares the data for further experiments.

3.2 Evaluation Scores

Since the participants did not have access to the testing data, they did

not include functionality to calculate or record the experiment’s evaluation

metrics. Working with an artificially generated testing dataset, I found these

evaluation scores essential for understanding the model’s performance and

assessing the outcomes of my future experiments. I integrated a new

functionality into the source inference file functions that calculates all four

key evaluation metrics for the predicted segmentations. This advancement

not only computes individual metrics but also averages them to identify

broader performance patterns. By doing so, it simplifies the process of

comparing these metrics across different experimental setups. I also added

a small script in a separate notebook file calculating averages per each

region—the ET, TC, and WT in order to compare the results region-wise

as well.

3.3 Batch Size Modifications

The first parameter I decided to experiment with is the batch size. The

source model was initially configured to train with a batch size of 1.

Sometimes, a larger batch size can reach more precise estimates of the

gradients and potentially better optimum minima—thus resulting in more

accurate predictions [20]. Considering this potential improvement and the

available GPU hardware capacities, I considered training my network by

doubling the batch size to 2. Finally, it was intended to compare the results

with those obtained from the original batch size setting. Though setting

a higher batch size made the algorithm execute much faster and showed

better accuracy, the GPU limitations did not allow me to go beyond a batch
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Contributions

size of 2 and take this experiment further.

3.4 Splitting Ratio Modifications

Constrained by the GPU limitations that prevented continuing experiments

with larger batch sizes, I came up with the idea of experimenting with split

sizes of training and testing datasets. The ratio between training and testing

datasets can potentially improve an algorithm’s performance. As the testing

dataset was generated artificially, I had the privilege of making different

versions with different ratios and comparing the outcomes.

Consequently, I generated datasets with training-to-testing ratios of 9:1, 8:2,

7:3, and 6:4. For each configuration, I prepared the data, conducted the split,

and proceeded with the testing and inference phases to save and compare

the results.

Lastly, I tried integrating a data augmentation model into the source code. I

completed the data preprocessing phase and was focusing on standardizing

the sizes of the MRI slices. but due to the time constraints this will be left as

a future work.
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4. Results and discussion

4.1 Results

The evaluation scores for the source data were as following: Hausdorff

(95%) of 20.6, 5.7, 4.3 mm; Dice of 0.81, 0.85 and 0.91 for the enhancing

tumor, tumor core and whole tumor, respectively[3].

As discussed in the Contributions(Chapter 3), in this work the inference

has been executed in 5 different setups – the original split(split with ratio

8:2) with batch size 1, the original split with batch size 2, the split with ratio

6:4 with batch size 1, the split with ratio 7:3 with batch size 1, and the split

with ratio 9:1 with batch size 1.

As indicated in Table 4.1, the results of the first setup are different from the

initial source’s results since the algorithms have been trained on different

datasets.

Table 4.1: Summary of Evaluation Metrics for Inference with Training-Testing
Ratio 8:2 and Batch 1

Metric Hausdorff Dice Sensitivity Specificity

Global Mean 11.64 0.85 0.89 0.999
ET averages 8.68 0.80 0.87 0.999
TC averages 8.35 0.86 0.90 0.999
WT averages 17.77 0.89 0.90 0.999

Comparing the results between Tables 4.1 and Table 4.2, we can clearly

indicate that in scope of this experiment the Specificity stays the same,

Sensitivity is also relatively stable. The Dice scores modify slightly

in specific regions, but still taken globally they are the same. The

only noticable difference is the Hausdorff distance, which has decreased

when using batch 2 in all regions—taking the global average Hausdorff

distance from 11.64 to 6.70. This is a good indicator—stating that a small

improvement is alredy observed when using batch size of 2.
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Results and discussion

Table 4.2: Summary of Evaluation Metrics for Inference with Training-Testing
Ratio 8:2 and Batch 2

Metric Hausdorff Dice Sensitivity Specificity

Global Mean 6.70 0.85 0.89 0.999
ET averages 7.14 0.79 0.87 0.999
TC averages 6.67 0.87 0.90 0.999
WT averages 15.19 0.88 0.89 0.999

Table 4.3: Summary of Evaluation Metrics for Inference with Training-Testing
Ratio 6:4 and Batch 1

Metric Hausdorff Dice Sensitivity Specificity

Global Mean 15.94 0.83 0.87 0.999
ET averages 10.33 0.79 0.80 0.999
TC averages 9.70 0.84 0.87 0.999
WT averages 27.42 0.86 0.94 0.997

Moving forward and comparing the evaluation metrics for predictions

trained on data split with Training-Testing Ratio 6:4(Table 4.3) to the

predictions trained on data split with Training-Testing Ratio 7:3(Table 4.4),

we can see that Specificity again stays the same, Sensitivity slightly increases

in the case of Training-Testing Ratio 7:3, which is a good sign, Dice score

stays relatively the same, and Hausdorff distance decreases, which indicates

that the setup with Training-Testing Ratio 7:3 outputs better predictions

than the one with Training-Testing Ratio 6:4.

Table 4.4: Summary of Evaluation Metrics for Inference with Training-Testing
Ratio 7:3 and Batch 1

Metric Hausdorff Dice Sensitivity Specificity

Global Mean 13.97 0.83 0.91 0.999
ET averages 11.45 0.76 0.88 0.999
TC averages 10.42 0.90 0.88 0.999
WT averages 19.89 0.88 0.95 0.998

Comparing the results between Tables 4.4 and Table 4.1, we can see that

Specificity stays the same in setups of Training-Testing Ratio 7:3 and 8:2, the

Sensitivity is a bit lower when the training data is 80%, Dice scores increases

by 0.2 points and Hausdorff decreases, which indicates that the setup with
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4.2 Discussion and Future Work

80% training data works better than that with 70% training data.

Table 4.5: Summary of Evaluation Metrics for Inference with Training-Testing
Ratio 9:1 and Batch 1

Metric Hausdorff Dice Sensitivity Specificity

Global Mean 14.09 0.82 0.88 0.999
ET averages 12.38 0.74 0.85 0.999
TC averages 9.32 0.84 0.85 0.999
WT averages 20.42 0.89 0.93 0.999

Finally, comparing the results between Tables 4.1 and Table 4.5 we can

see that the predictions trained on data split with Training-Testing Ratio 8:2

still show better results(smaller Hausdorff distances and higher Dice scores)

than the ones trained on data split with Training-Testing Ratio 8:2. However,

the difference is very small(around 2.37 for Hausdorff distance and 0.02 for

Dice score).

4.2 Discussion and Future Work

Finalizing the results observed in Section 4.1, the model with parameter

modifications slightly surpassed the original source model. We can see a

general trend (with one exception) that more training data results in better

segmentation results that are shown with higher Dice scores and lower

Hausdorff distances. Note that the batch size was fixed to 1 for comparing

the split effect. The metrics get better as we move from predictions of

inference with a training-test ratio of 6:4 to inference with a training-test

ratio of 8:2. The only exception is the results getting slightly worse in the

case of a training-test ratio of 9:1 compared to the ratio of 8:2. Overall, we

can state that the more training data resulted in better evaluation metrics in

the scope of this experiment. This is because the model has more data to

learn from and train on.

Another observation made is that changing the batch size from 1 to 2 also

improved the model’s performance in terms of accuracy. This can result

from more precise estimates of the gradients that batch size 2 can cause.

Also, when training with batch size 2 and concatenating 3D MRI images,
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the model can catch some patterns it could not observe before.

To achieve better results, several steps could lead to improvement. First,

it would be great to have access to the original dataset and do the training

on the 100% of the training dataset.

Second, implementing K-fold cross-validation could enhance our

segmentation model’s robustness and generalizability. Due to time

constraints, as each training session lasted for over several hours, this

approach was not feasible within the scope of the current study. Exploring

this method could provide more comprehensive insights into the model’s

performance across different subsets of data.

Lastly, data augmentation could be very helpful by artificially increasing

the amount of data. The current experiment does not include any data

augmentation since it was not present in the basic setup of the source model

architecture. However, I discovered that a complex data augmentation

model was used in the winner architecture of the same year BraTS 2020

challenge [19]. I tried integrating the data augmentation model into the

“Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-

net neural networks” algorithm. I finished the data preprocessing part and

was working on making the MRI slice sizes consistent. However, it was

not included in the scope of this project due to time constraints and the

complexity of the algorithms.

22



5. Conclusion

This paper describes a model proposed in the BraTS 2020 Challenge with

modified parameters and its most relevant results , modified to enhance the

results by adjusting the parameters. The experiments included modifying

the algorithm to train the data using batch size 2 instead of batch size 1;

experimenting with splitting the data into training and testing datasets

using different ratios to catch general patterns on how data splitting ratios

can effect model performance. I showed that there are slight improvements

when executing the training phase on a bigger dataset. Also, the results

were better when executing the code with batch size 2 rather than with

batch size 1. The model’s final best results consisted of Dices of 0.79,

0.87, 0.88 , and 0.55 validation accuracy , and Hausdorff distances of

7.14, 6.67, 15.19 for Enhancing Tumor Tumor Core and Whole Tumor,

respectively. Note that those results were achieved with a 3D U-Net model

with modified batch size, random split training, and testing data of the

ratio 8:2, respectively.
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