
Learning-Based Financial Price Prediction and
Visualization on Cloud Platform

Author: Natali Hovhannisyan
BS in Data Science

AUA

Author: Esfira Babajanyan
BS in Data Science

AUA

Author: Margarita Harutyunyan
BS in Data Science

AUA

Supervisor: Aleksandr Hayrapetyan
YSU
AUA

Abstract—Nowadays investments in stock prices are a core
pillar of market economy. There are many factors that may affect
the industry and; hence, the prices. Those factors may include
inflation, market prices, industry trends and most importantly
supply and demand. In order to predict stock prices and
catch volatility of prices, this project incorporates advanced
understanding of Machine Learning(ML) with a user firendly
representation of the insights through intergation of Google
Cloud Platform(GCP) and the Looker Studio in the project.

Index Terms—GCP, Time Series, Stock Market, RNN, LSTM,
AutoEncoder, Looker

I. INTRODUCTION

The stock market is a leading industry for investors, and
the dynamic financial market requires price predictions to
make accurate data-driven decisions. In recent years, ML al-
gorithms have greatly influenced the field of financial analysis.
Financial datasets, such as stock prices, exhibit non-linear
patterns;therefore, powerful tools such as deep learning are
used to explore the dynamics of price changes in the industry.
The aim of this project is to develop machine learning models
that will provide critical insights for the users in the stock
market and to visualize it in a user-friendly manner. In order
to capture volatility of financial data, we have implemented
different models such as Long Short-Term Memory(LSTM)
with Attention Mechanism, along with Convolutional Neural
Networks(CNN), dropout layers and also Autoencoders(AE).
In order to have visually appealing representation of all the
predictions we have also created visualizations via Looker on
GCP.

Cloud computing is a revolutionary technology that enables
on-demand provisioning of various computing resources, in-
cluding servers, storage, databases, software, networking, and
many other tools over the internet on a pay-as-you-go basis.
It equips individuals and organizations with the necessary tool
set to avoid resource overprovisioning and provides higher per-
formance and availability, dynamic scalability, lower expenses,
and better security.

GCP is one of the top cloud service providers, offering a
wide range of cloud services and a platform to deploy appli-
cations and store and analyze data on a scalable and reliable

infrastructure. Several of these services aligned perfectly with
the needs of our project, such as Google Cloud Functions for
serverless computing, Bigquery for data analytics, and Cloud
Run for running containerized applications, enabling us to
create a customizable and expandable architecture that fits our
project requirements. Last but not least, GCP offers generous
free trials and credits for new customers, which is perfect for
using GCP services without investing money upfront.

Looker Studio is one of the free tools that GCP offers.
It is an excellent tool for creating customizable, interactive
dashboards and reports that help businesses analyze data more
deeply. Its easy connectivity with other Google services and
source types expands its usefulness and makes it an adaptable
option for data-driven analysis.

II. LITERATURE REVIEW

A. Previous researches in ML field

The fluctuations in the stock market have been a topic of
huge interest to many industries, which has led to constant
research in the sphere. Various methods have been employed,
such as time series models like Arch, Garch (Dana, 2016),
reinforcement learning (Lee, 2001), and machine learning
models, among others, to understand the volatility of price
changes and assist investors in making data-driven decisions.
This paper focuses on predicting stock prices using Recurrent
Neural Networks(RNN) and AE. Hence, we will delve deeper
into a few research studies that have utilized these methods.

In (Shahi et al., 2022) a prediction of chaotic time series was
conducted using recurrent neural networks and reservoir com-
puting. In their research, they used LSTM, Gated Recurrent
Unit (GRU), Reservoir Computing (RC), Echo State Networks
(ESN), and Nonlinear Vector Autoregression (NVAR). For
testing the robustness of these models, those were tested
on times series from the famous Lorenz 63 and Mackey-
Glass which are systems of ordinary differential equations. In
addition, other datasets were also used, such as cardiac voltage
dataset. To address future computational problems, some of
the hyperparameters necessary for the RNNs were predefined
but for the most influential ones grid search was used along
with the Adam optimizer. For implementing LSTM and GRU

a Depp Learning toolbox in MATLAB was utilized that uses
acyclic graph structures. Initially, the network received sequen-
tial input, after which LSTM or GRU layers were implemented
to capture connections in time series data. In the end, a fully
connected layer linked the last gated RNN to the regression
output while implementing dropout layers to avoid overfitting.
After the training process, multi-step-ahead prediction was
utilized through the recursive method. Every output generated
from the network served as an input for the next predictions.
As an indicator for prediction accuracy, RMSE was used. In
conclusion for this paper, the authors derived that although
RNNs are good at time series forecasting, they could not
perform well with chaotic data. In this specific research, the
NVAR and ESN models show better results than LSTM and
gated RNN do, yet have lower computational costs.

In (Jahan, 2018), Israt Jahan examined how the LSTM
network will work for the prediction of stock prices. The
analysis is done on historical data of five years from Yahoo
Finance covering 5 major companies: Amazon Inc., FB Inc.,
Google Inc., Microsoft Inc., and Netflix Inc. After collecting
and scaling data with MiniMaxScler the data was used to train
LSTM. To asses the model’s performance, the Mean Squared
Error(MSE) was calculated .In total, 1259 days of data were
collected, with the initial 1008 points used as training data for
the first run. The model then predicted subsequent data points
by incorporating each newly predicted point back into the
training set. For example, after predicting the 1009th point the
model moved to predicting the 1010th point while including
the 1009th point in the training as well. The prediction
process continued until the model had price prediction for
all days in 2017 with all five models. The study employed
a basic LSTM network with the Rectified Linear Unit (ReLU)
activation function. Visualization of weekly, monthly, and
quarterly averages was used to display the differences between
actual and predicted values for all 5 companies. Apart from
the visualizations, the author uses statistical metrics to show
the model performance. The metrics include the Coefficient
of Determination (R**2), Pearson’s Correlation Coefficient,
Spearman’s Rank Correlation Coefficient, and Explained Vari-
ance Score. In addition, important statistical tests were also
conducted. The tests include the Chi-Square Goodness of Fit
Test, Kernel Density Estimation, and Wilcoxon Signed Rank
Test. The statistical solutions showed a strong correlation
between the predicted and actual values, hence proving that
LSTM was a good model for predicting stock prices.

(Selvin et al., 2017) study focuses on predicting the stock
prices of companies in the National Stock Exchange list. It
is worth mentioning that the data consists of minute-wise
information rather than daily prices covering data for 1721
companies for a year. The research has examined the sliding
window approach with data overlap, feeding minute-wise data
as an input. After obtaining the data, three companies were
selected for further examination. The aim of the research was
accurate short-term future predictions; namely, a window size
of 100 minutes including 90 minutes overlap was chosen for
predicting future 10 minutes. Three models that were used in

this study are RNN, LSTM, and CNN. Based on their research
CNN showed the lowest error percentage and the main reason
for this is that CNN does not consider previous lags as is the
case for RNN and LSTM. Instead, CNN uses only changes
in that current window, minimizing historical data’s impact on
the final output.

In this research (Xie and Yu, 2021), an unsupervised method
is used for the prediction of stock prices, more specifically,
Convolutional AutoEncoders (CAE). The structure of the
model is as follows: the input is the data covering daily
stock prices, exchange rates, oil prices, etc. That is followed
by the encoder layer, which consists of three components:
Rectified Linear Unit activation function, batch normalization,
and a pooling layer. In the middle part, when the features
already form a vector, the Support Vector Machine(SVM)
model is applied to determine class probabilities. Afterward,
the responsibility of the decoder layer is to learn the feature
maps, transform those to their original dimension, and pass
those to the convolutional layer using the sigmoid activation
function. For analyzing the results of CAE, accuracy for next-
day predictions is calculated. In the end, the results of the
method are compared to four baseline methods such as SVM,
Principal Component Analysis(PCA) and SVM, PCA and
Deep Neural Networks(DNN), and last but not least LSTM.
The paper is considered to be one of the first studies to use
CAE for price prediction, and based on this research, it could
improve the predictions by 4-7 percent.

III. METHODOLOGY

A. ML Components

In our study, we employ three distinct models for predicting
stock price, the core of which are LSTM networks and AE.
Before diving deeper into the architecture of the models, it
is crucial to understand what they represent and how they
handle data. LSTM networks belong to RNN, which can take
a sequence as their input, such as temporal data. Although
RNNs perform well when working with short-term data, they
encounter a problem in backpropagation. After doing the
backpropagation multiple times, RNNs have either exploding
or vanishing gradient problem; to be more precise, when doing
backpropagation, we first find the gradient or the derivative for
each parameter, and after that, we insert those derivatives into
the gradient descent algorithm to find the point that minimizes
our loss function. It is worth mentioning that weights and
biases remain the same for every layer of RNN. This causes
a problem in the backpropagation phase whenever we have a
weight that is bigger or smaller than 1 since, in the case of ¿1,
our initial input gets multiplied by a considerably huge number
(based on how “long” our data is). Because of this problem,
we get the exploding gradient problem, which hinders us from
finding the optimal parameter. In contrast, when the weight is
a number smaller than 1, our initial input gets multiplied by
a very small number which will cause a vanishing gradient
problem because of keeping the parameter very close to zero
and hindering us from finding the optimal parameter because
the steps are too slow. LSTM comes in handy to overcome

the exploding/vanishing gradient issue. LSTM is a special
type of RNN that was introduced in 1997 by Hochreiter and
Schmidhuber.

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf)

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct)

In the case of LSTM, hidden layers of the network are
replaced with LSTM layers, which help to differentiate be-
tween events that happened long ago (long memories) and
ones that happened recently (short-term). LSTM utilizes the
sigmoid function, which maps the input to a range between
0 and 1, and the tanh function, which maps the input to a
range from -1 to 1 (See Figure 1). Apart from the functions
included, the architecture of LSTM can be decomposed as the
following:

• Input gate
• Cell state
• Hidden state
• Forget gate
• Output gate

Fig. 1. Long Short-Term Memory

The cell state of LSTM is responsible for long-term memory
and does not include any biases and weights in order to avoid
the infamous exploding or vanishing gradient problem. The
hidden state of LSTM is responsible for short-term memories
and, hence, also includes weights that can modify the initial
input. LSTM networks also include 3 gates, which are crucial
parts of the network’s functionality. Firstly, in the forget gate,
the sigmoid function decides if the long-term memory will be
kept or not, since if it maps the value with 0 and multiplies it
with the long-term memory, it will, obviously, vanish. In the
input gate, the existing long-term memory is already being
updated using the tanh and, afterward, the sigmoid activation

functions. Last but not least, we use the output gate to decide
the final short-term memory. Since the LSTM network is
designed to handle the exploding/vanishing gradient problem
when accepting sequence as an input we have decided to
incorporate it in two of our models.

AugmentedLSTM: In our initial model, we have imple-
mented LSTM complemented with dropout, ReLu, and linear
transformation. After going through the LSTM layers, the
data goes through the dropout layer. The functionality of
the dropout layer is as follows: it randomly nullifies some
of the input values, which helps avoid overfitting the data
and optimizes computational efficiency. After passing through
the dropout layer and deactivating some of the nodes, the
data undergoes the linear transformation layer upon which
the ReLu activation function is implemented. In the linear
layer, the data is reduced in dimensionality twice, and after
going through linear transformation, the data is immediately
introduced to the ReLU function.

ReLu(x) = max(0, x) (1)

The function retains only non-negative values by comparing
the input to zero and proceeding with the maximum. From that,
we can infer that ReLu excludes negative values and introduces
the model to non-linearity, which is a crucial step in detecting
more complex patterns. In the final layer, the model undergoes
another linear transformation, but this time, the dimensionality
is reduced to 1, and the output is already the prediction (See
Figure 2).

Fig. 2. Augmented LSTM

ComplexModel: Our second model is a hybrid integrating
LSTM with CNN (Sayavong et al., 2019) and Attention
Mechanism. Although the model also includes ReLu activation
and dropout layer, CNN and multi-head attention have a
pivotal role in enhancing the accuracy of the predictions. To
elaborate, let us decompose the functionalities of each. CNN
is usually well known for image processing and recognition
due to its ability to find necessary shapes or patterns in an
image (Chen and He, 2018). However, stock price prediction

can also be a field for CNN to find patterns. Mainly, CNN finds
features with higher importance and increases their weights to
amplify their influence on the prediction. CNN processes the
stock data as a matrix and applies convolutional filters over
all the blocks in the matrix (See Figure 3). The results of the
conducted operation are saved in a new matrix in the form of a
dot product between the convolutional filter and a block. CNN
will particularly accentuate the importance of the ADJ Close
feature since its impact on the predicted output is bigger.

Fig. 3. Convolution Filter

The next important technique in this model is the attention
mechanism (Vaswani et al., 2017), in our case specifically
the multi-head attention mechanism. The attention mechanism
mimics the human brain’s neurological system which blurs
some background information when a certain part of our brain
needs more attention. The attention mechanism complements
the availability of CNN by highlighting the important features
once again. It selectively focuses on some parts of the input
when making the prediction and in our case, it should be
the Adj Close since it impacts the close price the most. The
attention mechanism is beneficial when working with long
data, such as time series, since due to its technique of con-
stantly highlighting useful parts it helps to extract necessary
information from extensive data without losing those. The
self-attention mechanism works by having three important
components for each input vector: query, key, and value. The
query and key pass through layers before reaching the matrix
multiplication with the value vector. The first query and key
undergo matrix multiplication which results in an attention
score. The attention score is the dot product of the query
vector with a key value and shows how well the values align
with each other. Since these initial attention scores can be
huge numbers, the next layer is scaling so as to have more
consistent values. Lastly, the values are passed to the softmax
function which maps their values to a number in the range of
0 and one. The probabilities achieved after softmax determine
the weight of each value vector. (See Figure 4)

The multi-head attention does multiple self-attentions in

Fig. 4. Self-Attention Mechanism

parallel; hence, covering a bigger space of information and
being more time-efficient. The difference is that there is
not only one vector of query, key, and value but sets of
queries, keys, and values that simultaneously focus on different
sections of the input data. (See Figure 5)

Fig. 5. Multi-Head Attention

AutoEncoder: In the development of our last model, we
have integrated AE. AE are used to encode and reconstruct
the input data as their output. AE are mainly used for dimen-
sionality reduction or for feature learning (Xie and Yu, 2021).
They are composed of four key components: input, encoder,
decoder, and output. Upon receiving the input, AE moves it
to the encoder chunk which may consist of several layers. In

the encoder section, the input data undergoes dimensionality
reduction, which then is given to the decoder part as input.
The decoder, in contrast, tries to bring back dimensionality
and mimic the input data. The difference between the output
and input is then calculated with a loss function; so ideally,
we should have identical input and output. In our proposed
version of AE for price prediction, we have employed linear
transformation and the ReLu activation function several times.
First, when the input sequence enters the encoder section
it undergoes a linear transformation which maps the input
dimension to a hidden layer dimension. Exactly afterward we
use the ReLu activation function to integrate non-linearity.
At this point, the data is transferred to the decoder section
as input. The decoder tries to reconstruct the data by first
transferring the data back from the encoder layer to the hidden
layer and implementing ReLu above. Then again one more
linear transformation already maps data from the hidden layer
to its original dimension (See Figure 6). The last timestamp
of the prediction is treated as the close price.

Fig. 6. AutoEncoder

B. Platform Engineering

Compute
Engine

Developer

pushes code

CI/CD

Cloud
Functions

Stock Data Predictor

BigQuery Dataset

Cloud
Functions

Stock Data Updater

Cloud Run

UI App

Cloud Run

Model App

Cloud
Build

Container
Registry

Pushes Image

Cloud
Scheduler

POST/GET

POST/GET

Looker

GCP

User

Interacts with website

Fig. 7. Cloud Platform Architecture

1) Cloud Architecture and Deployment:
Google Compute Engine: Google Compute Engine is

an Infrastructure-as-a-Service (IaaS) product provisioned by
Google Cloud Platform for hosting self-managed virtual ma-
chine (VM) instances, which provide computing and hosting
capabilities (Cloud, 2024). We have utilized this service to de-
ploy a self-hosted GitLab instance on a custom Machine type
with x86/64 Architecture and Ubuntu 23.10 Operating System
(OS). The GitLab instance provides the central repository
and automation hub for our project’s source code versioning,
deployment scripts, and pipelines.

Continuous Integration and Deployment (CI/CD): The
project utilizes a GitLab CI/CD pipeline for automated testing
and resource deployment to follow Software Development best
practices to avoid bugs and failures, decrease complexity, and
increase efficiency. The pipeline automates the testing, build-
ing, and deployments to GCP. GitLab runners, lightweight
agents responsible for running CI/CD pipeline jobs, are also
hosted on the same Compute Engine instance for reduced
network latency, simplified management, and cost efficiency.
The runners use a Shell executor, the simplest executor pro-
vided by GitLab. It allows it to run the jobs directly on the
host machine without dealing with the overhead of running
virtualized workloads and managing containerization.

2) Data Management and Processing:
BigQuery Datasets: BigQuery is the central data warehouse

for storing historical stock data and prediction values in two
separate Datasets, which are used for the subsequent analysis
and visualization. BigQuery is Google Cloud’s fully managed,
petabyte-scale data warehouse chosen for its cost-effectiveness
(Cloud, 2024).

Cloud Functions: The cloud function is a serverless com-
puting solution that enables the developer to run lightweight,
single-purpose functions that respond to cloud events without
managing the runtime environment or a server. The project
cloud functions are used for automatic data retrieval and
processing and act as a scheduled task or ”CronJob.” The
stock data updater function retrieves data using ’yfinance’
Python library, which in turn sources the data from Yahoo
Finance. The second function processes the same data to
generate predictions by sending a request to the application
that runs our model predictions and forwards the prediction
to a specified application endpoint (See Figure 7). These
functions are scheduled via Cloud Scheduler, which indirectly
triggers the execution by publishing a message to the corre-
sponding function’s Pub/Sub trigger topic. After data retrieval,
the functions format the data to the required format and upload
it to the respective BigQuery Datasets (Figure 7).

3) Application Layer:
Cloud Run Applications and Artifact Registry: There are

two applications, a UI application and a Model application
running on Cloud Run, a managed computing platform that
enables containerized applications to be run that can respond
to web requests or events. The CI/CD pipeline triggers a
build on the cloud, which creates the Docker images for both
applications and stores them in the Google Artifact Registry.

Cloud Run pulls these images from the Registry to run the
applications while ensuring both run the latest versions with
consistent environments. UI Application serves as the user
interface and is the immediate gateway to our platform for our
stakeholders. It incorporates embedded Looker Studio reports,
which utilize the BigQuery mentioned above datasets as their
data source. It also provides the functionality for making
prediction requests with appropriate inputs for Open, High,
Low, Adj Close, and Volume values to the Model application.
The Model application manages the computation of stock price
predictions. It receives input from the UI, makes the prediction
based on the trained and saved machine learning models,
and sends the computed results back to the UI for display
(Figure 8). This application also receives requests from the
platform’s Stock Data Predictor Cloud Function.

Fig. 8. Prediction results on the UI

4) Integration and Workflow: The system’s structure is
planned to guarantee a smooth flow of data and connectivity
among different parts. Information retrieved and handled by
Cloud Functions is saved in BigQuery, utilized by Looker
Studio for visualization, and employed by the model app
for prediction generation. The UI application shows these
forecasts, giving stakeholders useful, live analytics.

5) Security and Access Management:
Service Account Configuration: To maintain a strong level

of security and follow the least privilege principle, separate
service accounts have been created for different infrastructure
components. Every service account is customized to have only
the essential permissions and roles needed for its responsi-
bilities. This reduces possible security risks by limiting each
account’s access to only necessary resources for its tasks.

Key Management and Pipeline Security: To ensure pro-
tection from unauthorized access, access keys for service
accounts were securely controlled. Before running the CI/CD
pipeline, these keys are encrypted and saved as environmental

variables in the CI/CD system. Keys are deciphered on the
fly only when necessary during the pipeline execution, guar-
anteeing that they are not revealed in logs or hard coded in
repositories.

Identity and Access Management (IAM): The project en-
forces strict IAM policies consistently reviewed and adjusted
to adhere to top security standards. These measures guarantee
that only approved individuals, and automated systems can
carry out particular tasks in the cloud setting. Role-based
access control (RBAC) is strictly implemented to control
resource access. Assigned specific roles to users and service
accounts to determine access level and allowed operations,
ensuring a secure operational environment.

VISUALIZATIONS WITH LOOKER

In the scope of this capstone, the primary tool used for
Visualizing the data and the KPIs was Looker Studio, offered
by Google. Looker Studio is a self-service business intelli-
gence that was the most suitable for our project, and it is
hosted on the cloud platform. It has a lot of functionality and
allows the user to analyze data and make visualizations. One
of its most significant advantages is its user-friendly interface,
which is intuitive for newcomers. Looker Studio has various
connectivity options, including BigQuery, which we used in
the capstone project. This connection allows us always to have
up-to-date data that will appear on our dashboard as soon as
the BIgQuery tables are filled. Moreover, Looker Studio has a
wide range of visuals, such as line charts, bar plots, and heat
maps. It also allows the creation of metrics that will be used to
calculate some KPIs (Key Performance Indicators) to analyze
the data more deeply. We made six separate dashboards for
our project, five representing the stock data analysis for five
companies. These dashboards have the same appearance but
analyze data for different companies. The final dashboard
contains combined data for all five companies and allows users
to compare the stock data of those companies. The individual
dashboards contain time series data for the specific company’s
close price (Figure 9).

Fig. 9. Close Price over time

Our dashboard also includes a date filter that allows us to
observe data in a particular date range to avoid complex and
unreadable plots. The filter applies to the whole page, which

helps to examine other measures and KPIs we define within
that range. For instance, our data contains a calculated column
ROI (Return on investment), which shows the profitability of
the investment and is used to calculate and depict the number
of negative and positive ROIs on the dashboard, which changes
when the date range is altered (Figure 10).

Fig. 10. Date Filter Effect on ROI count

The Main dashboard containing combined data also includes
a dropdown menu for Company selection, allowing users to
observe data analysis for the companies they need (Figure 11).
As in the case of the date filter, the dropdown menu also
applies to the whole page and allows one to observe the
plotted graphs with the specific companies. For instance, the
main dashboard contains the ROI value over time for the five
companies, but we can select only Apple and Meta (Figure 11).

Fig. 11. Drop down menu application

IV. RESULTS

The analysis of the training processes of our three models
has given us clear understanding of the performance of each
model. Based on training results the best model from our
project is the AE model. However; the Augmented LSTM
also gives very close results. The model with the highest
fluctuations remains the hybrid model which includes LSTM
along with CNN and Attention Mechanism. Below are the

visualizations corresponding to the training process on Google
stock data.

Fig. 12. R2 for Google

Fig. 13. RMSE for Google

Fig. 14. MSE for Google

Fig. 15. TrainLoss for Google

V. CONCLUSION

To conclude, our project has effectively utilized the GCP
to implement a multi-layered, scalable, and safe system for
stock data management and prediction. Employing Google
Compute Engine and other GCP services like BigQuery,
Cloud Functions, and Cloud Run, we have created a system
architecture that executes all data processing automation and
sustains continuous integration and deployment. Moreover,
we have successfully incorporated advanced machine learning
models, including RNN such as LSTM networks, CNN and
AE, to emphasizing important features and make predictions
about the closing prices of stocks.This architecture satisfies the
project’s technical and operational requirements and shows the
benefits of using cloud technologies, which ensure better per-
formance, reduce costs, and make data processing and analysis
more efficient. This platform now constitutes a strong basis for
future innovation; it can serve as an upgradable structure that
new project specifications or technological advancements can
flexibly modify.

BIBLIOGRAPHY

Sheng Chen and Hongxiang He. Stock prediction using con-
volutional neural network. In IOP Conference series: ma-
terials science and engineering, volume 435, page 012026.
IOP Publishing, 2018.

Google Cloud. Google cloud platform documentation, 2024.
URL https://cloud.google.com/docs.

AN Dana. Modelling and estimation of volatility using
arch/garch models in jordan’s stock market. Asian Journal
of Finance & Accounting, 8(1):152–167, 2016.

Israt Jahan. Stock price prediction using recurrent neural
networks. 2018.

Jae Won Lee. Stock price prediction using reinforcement
learning. In ISIE 2001. 2001 IEEE International Symposium
on Industrial Electronics Proceedings (Cat. No. 01TH8570),
volume 1, pages 690–695. IEEE, 2001.

Lounnapha Sayavong, Zhongdong Wu, and Sookasame
Chalita. Research on stock price prediction method based

on convolutional neural network. In 2019 international con-
ference on virtual reality and intelligent systems (ICVRIS),
pages 173–176. IEEE, 2019.

Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan,
Vijay Krishna Menon, and KP Soman. Stock price pre-
diction using lstm, rnn and cnn-sliding window model. In
2017 international conference on advances in computing,
communications and informatics (icacci), pages 1643–1647.
IEEE, 2017.

Shahrokh Shahi, Flavio H Fenton, and Elizabeth M Cherry.
Prediction of chaotic time series using recurrent neural net-
works and reservoir computing techniques: A comparative
study. Machine learning with applications, 8:100300, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Li Xie and Sheng Yu. Unsupervised feature extraction with
convolutional autoencoder with application to daily stock
market prediction. Concurrency and Computation: Practice
and Experience, 33(16):e6282, 2021.

https://cloud.google.com/docs

	Introduction
	Literature Review
	Previous researches in ML field

	Methodology
	ML Components
	Platform Engineering
	Cloud Architecture and Deployment
	Data Management and Processing
	Application Layer
	Integration and Workflow
	Security and Access Management

	Results
	Conclusion
	Bibliography

