
Learning Based Approach in the Selectivity
Estimation Problem

Author: Liana Darbinyan
BS in Data Science

AUA

Supervisor: Aleksandr Hayrapetyan
Yerevan State University

AUA

Abstract—Coherent query optimization depends on the ac-
curacy of Selectivity Estimation (SE) in generating efficient
execution plans. Modern optimization techniques use diverse
assumptions, such as predicate independence, when dealing with
queries containing multiple predicates. However, in contrast
with the advantage of fast estimation time and less memory
consumption, they often suffer from large selectivity estimation
errors. This capstone thesis presents a comprehensive inves-
tigation of selectivity estimation, considering it a regression
problem. We explore the application of neural networks and tree-
based ensembles to the vital problem of selectivity estimation
of multi-dimensional range predicates. Focusing on database
system performance, we conducted a deep analysis of several
datasets from various fields for collecting and analyzing statistical
data, aiming to enhance selectivity estimation within the system.
By performing an in-depth statistical evaluation of numerous
datasets, we demonstrate that the suggested models produce
estimates that are both fast and highly accurate.

Index Terms—Keywords: Relational databases · Query op-
timizer · Cardinality estimation · Neural Networks · Machine
Learning for Selectivity Estimation

I. INTRODUCTION

Selectivity Estimation (SE) is the central component in
cost estimation, used for database query optimization that
involves estimating the size of query predicate results [1].
This estimation forms the basis for the optimizer to select
the most cost-effective execution plan. It gathers attribute
statistics like data distribution, influencing planning decisions
to achieve smaller intermediate result sizes for more efficient
execution. Ideally, an SE technique should provide accurate
and fast estimates, use a data structure that has a small memory
footprint and be efficient in constructing and maintaining
[2]. The requirement of fast estimation follows from the
expectation that query optimization time should be short [3],
[4] and is an essential practical constraint in the database
systems. In cost-based optimization, SE assesses alternative
query plans’ costs, selecting the most resource-efficient one
out of them all. Existing methodologies include heuristic-based
assumptions such as Attribute Value Independence (AVI)
for calculation of combined selectivity on multidimensional
predicates [4], [5], construction of histograms on single-table
attributes [4], or integration of lightweight models, strategies
for handling inequality joins and deep learning applications in
multi-attribute scenarios. These often fail to provide precise
estimates, leading to sub-optimal or inefficient execution plans
and eased system performance. In the cases of heuristic-based

estimation assumptions, having attribute correlation may raise
huge errors, resulting in low-quality plans [6], [7]. In such
situations building multidimensional histograms might help
to some extent, but frequently, significant space is required.
Approaches based on sampling could be effectively successful
in managing correlations and attribute dependencies, however
in the case of queries with low selectivity, the optimizer
could be forced to depend on magic constants [8], leading
to inaccurate estimations.

Researchers have been actively addressing the multi-
dimensional selectivity estimation problem [2], resulting in
various approaches such as multi-dimensional histograms [9]–
[11], techniques utilizing random samples [12], or using
hybrids of histograms and samples [13]. Those techniques
enhance accuracy by substantially raising either space or time
requirements. This is mainly done because they rely on a
greater number of histogram buckets or larger sample sizes

(a) For 2-dimensional predicates over a highly correlated attribute-
pair

(b) For 4-dimensional predicates over attributes with mixed degree
of correlation

Fig. 1: Estimation quality for AVI and STHoles. Plot title
shows percentage of small errors [ratio-error < 2]

to adequately depict the data distribution in high-dimensional
space. Query-driven histograms, also called self-tuning his-
tograms [9], [12], [14], [15], employ more histogram buckets
in the subspace of the current query workload. Nevertheless,
this focused strategy aims to refine the balance between preci-
sion and expense, the precision of such methods might degrade
when workload queries have more intersections with one
another, spanning across a large portion of multi-dimensional
space.

In the scope of our capstone project, we analyzed estimates
generated using two types of histogram techniques: (i) AVI as-
sumption, which solely relies on one-dimensional histograms;
and (ii) STHoles [9], which employs a query-driven multi-
dimensional histogram. We utilized a representative real-world
datasets and a set of queries distributed across the entire
domain space. In Figure 1, a scatter plot illustrates the actual
number of rows satisfying the predicates (s) versus the corre-
sponding estimated values (ŝ) for both 2D and 4D predicates.
It can be noted that queries with small estimation errors, where
max(sŝ ,

ŝ
s) < 2, lie in a diagonal band-shaped area. Queries

with larger errors deviate farther from this region. With the
AVI approach, small part of the queries exhibit small errors,
while large errors are relatively common. In contrast, STHoles
provides estimates with higher accuracy for 2D predicates
except for some outlying ones. However, for 4D predicates
it results in significant errors and larger estimation time.

Beyond the above-mentioned methods, the issue of selec-
tivity estimation has also been formulated as a regression
problem: ”Given a set of queries labeled with actual selectivity
values, learn a function from a query to its selectivity” [1].
Such labeled queries can be obtained as feedback from prior
query executions [14], [16], as suggested by self-tuning tech-
niques, or they can be constructed offline in data-driven man-
ner, similar to histogram construction. Regression formulation
efforts in past attempts employed neural networks [17]–[21],
however, these methods are not designed for fast estimation
of multi-dimensional range selectivity.

II. LITERATURE REVIEW

Whenever a declarative query is submitted to the database
system, it undergoes an optimization process to identify an
efficient (low latency) execution plan. The parsed query is
being transformed in the query decomposer, which is given
to the query optimizer, where the core of the query execution
plan is being generated. The execution plan is chosen by the
query optimizer, and its quality heavily relies on the accuracy
of size estimates at various intermediate stages, often referred
to as selectivity estimates. Selectivity estimation is a critical
aspect of query optimization as it directly influences the
efficiency of query processing. Figure 2 provides an overview
of how the query processing architecture interacts with the
selectivity estimation module. The selectivity estimation tech-
nique commonly has an offline phase, which is the statistical
information collection process when we excite the information
about database tables with row counts and domain bounds.
This information serves as a source for selectivity estimation

Fig. 2: Selectivity estimation in query processing

techniques in the process of query optimization. An example
of a query with conjunction of multiple simple predicates
on different attributes of a database table can be represented
in a general form: (〈attribute〉 〈operator〉 〈constant〉). In
most cases, database systems calculate selectivity for each
simple predicate as a first step, choosing fractional approach
and constructing a histogram on the corresponding attribute.
After that, the combined selectivity of conjunction is being
calculated using an assumption of distribution of values for
different attributes. Two of the most common assumptions are:

1) Attribute Value Independence (AVI): This method relies
solely on one-dimensional histograms. It assumes that
the selectivity of each attribute is independent of the
values of other attributes in the query predicate. AVI
assumption leads to the implication of having no correla-
tion between the selectivity of different attributes within
each query. While the estimation process is being sim-
plified with this assumption, in the majority of cases it
may lead to inaccuracies, especially in high-dimensional
spaces where correlations between attributes cannot be
monitored and are common. Under this assumption, the
combined selectivity fraction for predicates is calculated
as

d∏
k=1

(sk)

where d is the attributes and sk is the selectivity fraction
of the predicate on the kth attribute. AVI is often com-

pared to other techniques, such as query-driven multi-
dimensional histograms, which take into account the
correlations between different attributes to provide more
accurate selectivity estimates.

2) STHoles — a ”workload aware” histogram: This
method allows bucket nesting to capture data regions
with uniform tuple density. STHoles histograms are cre-
ated without data sets examination, rather by analyzing
query results. Buckets used are being allocated based
on the most need of the workload; this in its turn,
leads to accurate selectivity estimation of the query [9].
Multidimensional histograms are considered to be an
effective approach for accurate selectivity estimation in
case of multi-attribute queries. This technique is widely
used for its possibility of producing good estimates
across different kinds of datasets such as synthetic, real-
world data and across query workloads. In many cases
it even outperforms the best multidimensional histogram
techniques which require access to and processing of the
full data sets during the histogram construction.

The existing techniques for selectivity estimation highly de-
pend on the information availability, and in cases of limited
insights, those techniques may result in inaccurate calcula-
tions or huge time and memory requirements [5]. As an
instance, due to attribute correlations, multi-dimensional range
predictions on a single database can yield to estimation mis-
takes. Past research literature states that actual selectivity for
predicates can be used to improve future estimates - current
systems do not fully satisfy this yet. Many powerful regression
methods are present for using the query results for learning
and acquiring good quality selectivity estimation.

A. Problem Statement

In the scope of this capstone project, we performed im-
provement of database query optimization, with a specific
focus on refining selectivity estimation methods. Aiming to
address the issue of inaccurate selectivity prediction for range
predicates and queries involving multiple attributes, by delving
into innovative approaches. Existing approaches often face
limitations in providing precise estimations, resulting in sub-
optimal query execution plans that significantly impact the
overall performance of database systems. We aim to address
this issue by exploring and implementing advanced techniques,
including the integration of traditional machine learning mod-
els for range predicates, formulation of known strategies
to enhance selectivity estimation, and application of deep
learning in scenarios with multiple attributes. The overarching
goal is to forge more accurate and adaptable selectivity esti-
mation methods, ultimately contributing to the enhancement
of database query optimization and, consequently, improving
the overall efficiency of database systems across various use
cases.

We consider having a table T, with d numerical attributes
A1, A2, ..., Ad. The domain for kth attribute is considered to
be [mink,maxk]. Conjunctive query q on numerical attributes
of T are being represented in the following canonical form:

(lb1 ≤ A1 ≤ ub1) ∧ ... ∧ (lbd ≤ Ad ≤ ubd), where lb is the
lower bound and ub is the upper bound of the attribute in the
query. In this representation, those bounds for each attribute
are defined based on the query that the attribute is involved in,
shrinking the domain values by the corresponding limitations.
For queries that do not contain predicates on some attribute Ak,
the domain values are being used as [mink ≤ Ak ≤ maxk]. In
the instance of having two attributes A1andA2, each having
domain [0, 100], the predicate A1 ≤ 10 would result in the
following canonical representation: (0 ≤ A1 ≤ 10) ∧ (0 ≤
A2 ≤ 100). The actual selectivity of q is defined as the number
of rows in table T satisfying all predicates in the query q,
denoting it as act(q). The same way, the estimated selectivity
for query q is denoted as est(q). This gives us the opportunity
to define a labeled query set

S = {(q1 : act(q1)), (q2 : act(q2)), ..., (qm : act(qm))}

with the actual selectivity as the label. Example of this query
set can be

Sexample = {((0 ≤ A1 ≤ 10) ∧ (0 ≤ A2 ≤ 100)) : 10000,

((15 ≤ A1 ≤ 100) ∧ (2 ≤ A3 ≤ 17)) : 44650, . . . ,

((0 ≤ A2 ≤ 36) ∧ (16 ≤ A6 ≤ 20)) : 544862)}.

The goal is, by the given set S of labeled queries, learning
a regression model M in such a way that for any conjunctive
range query q on T, M produces the estimated selectivity value
est(q) close to the actual selectivity value act(q). As a matter
of fact, no assumption about the source or the distribution of
queries in the set S is being made, however the learned model
M is expected to produce accurate estimates for queries which
are represented well in the given labeled queries set S, that
is considered as the training set. The focus of the study on
the selectivity estimation is for conjunction of two or more
predicates.

B. Selectivity Estimation as a Regression Problem

The usage of regression models in the selectivity estima-
tion process is known for the potential to capture complex
relationships between query features and selectivity estimates,
leading to more accurate estimated values compared to more
straightforward techniques. The model can adapt to changing
workloads and data distributions by continuously learning
from query data. The main goal for our regression models is
to learn a function that maps query features (i.e., predicates)
to selectivity estimation values. The input features we used
for our regression model M are constructed hereby: With the
labeled queries set S, for each query qj in S, we create a
tuple of 2 x d values such that both lower bound and upper
bound of each attribute is included and is in consecutive form
⟨lb1, ub1, lb2, ub2, ..., lbd, ubd⟩. In this paper, we refer to these
input features as range features. For each query correspond-
ingly, the actual selectivity value - act(qj) is considered as the
source of the regression label. For example, the input features
for queries in Sexample are ⟨0, 10, 0, 100⟩, ⟨15, 100, 2, 17⟩, with
regression labels 10000, 300, respectively.

C. Utilized Machine Learning Models

For regression model M construction, multiple types of
regression techniques are used as the data can have linear
or non-linear, complex distributions, and to be exact in our
findings we chose to take into account all cases in general.
We consider three types of regression methods: linear, neural
networks and tree-based ensembles. Since neural networks and
tree-based ensembles both are trained on a large dataset of
queries we expect them to learn complex relationships between
query features and selectivity. This flexibility enables them
to handle complex data distributions more effectively than
histograms [1].

• Linear and Multidimensional Linear Regression: As a
foundation for understanding and potentially using as a
baseline approach, linear regression techniques can play a
valuable role in selectivity estimation. For some database
systems, the relationship between the query features (i.e.
attribute domain ranges) and selectivity values might
showcase certain degree of linearity. For example, simple
queries used to filter data based on single attribute within
a given domain range. As this range gets wider, the
proportion of data being returned might decrease linearly.
Multidimensional linear regression can be considered
when dealing with queries that involve many attributes
and when the connection between the features and se-
lectivity are primarily linear. The ”dependent variable”
would be the selectivity, and attribute ranges specified by
the query would be the ”independent variables”. However,
it is worth noting that real-world data often exhibit non-
linearity because of the complex interactions between
attributes and data distributions in the query. In cases like
this, the linear regression models would lead to significant
estimation errors.

• Neural Network (NN): Our study employs a neural net-
work architecture with ReLU (Rectified Linear Unit)
activation functions in the hidden layers. These activation
functions create a ”piecewise linear” effect, efficiently
dividing the query space (comprising all possible queries)
into local regions [22], [23]. Within each zone, the
network approximates the selectivity function as a sim-
ple linear model. This approach offers flexibility: by
increasing the number of hidden layers and neurons we
can create more complex divisions of the query space,
potentially leading to more accurate selectivity estimates
[22]. The basic NN model consists of an input layer
made up of nodes to feed the vector of feature values
as input and a single neuron output layer that generates
the prediction value. The network can include additional
neurons in the form of l hidden layers in, addition to the
neuron in the output layer.

– When l = 0, neural network is equivalent to a linear
regression model.

– When l > 1, we refer to the network as a deep neural
network.

For this project we utilize a neural network with fully

linked layers, meaning all neurons in one layer are
connected to all neurons in the subsequent layer.

• Tree-Based Ensembles: Techniques such as gradient
boosting and random forests fall under the tree-based
ensembles category. These algorithms construct multiple
decision trees. As a classifier, each tree consecutively
divides the query space into rectangular regions according
to particular features and their values. Each leaf node or
terminal point of a tree represents a unique area of the
query space defined by conjunction of the ranges on input
features, i.e. (c1 ≤ lb1 < c2) ∧ (c3 < ub1 ≤ c4) ∧ (c5 ≤
ub2 ≤ c6). When a new query is being inserted, it is
navigated through each tree based on its features until
it reaches a leaf node. The final selectivity prediction
results from the aggregation of predictions of all trees
(i.e. average for random forest, weighted sum for gradient
boosting). By increasing the number of trees and leaves in
the ensemble, more precise partitions of the query space
may be made, which potentially leads to more accurate
selectivity estimates.

These methods learn partitioning the query space and es-
timating selectivity efficiently within each region, unlike his-
tograms that store exact values of selectivity for a predefined
queries set [23]. This translates to a smaller memory footprint,
making them more scalable for real-world database systems
that may have large query spaces. So, when estimating se-
lectivity with tree-based ensembles, a small number of binary
search trees are being traversed; this process is typically faster
than the intricate calculations that neural networks may need
to perform. Nevertheless, the precise computational efficiency
might be impacted by the choice of network architecture and
hardware optimization.

III. METHODOLOGY

The experimental setup for method construction is crucial
for building a solid base for our study. Our methodology
adopts a comprehensive approach to refine selectivity esti-
mation methods and optimize database query performance.
The critical components for our approach include Python and
PostgreSQL environments configuration, adherence to coding
practices, selectivity estimation techniques utility, appropriate
selection of regression techniques, and employed evaluation
criteria.

A. Data Collection and Labels Transformation

We used three real-world datasets from different domains
to evaluate the estimation quality of various realistic data
distributions.

1) Power [24] : This dataset consists of measurements
of electric power consumption in a household, sam-
pled at a one-minute rate over almost four years. It
includes various electrical quantities and sub-metering
values. The dataset contains 2,075,259 measurements.
For our experiment, we used 7 numeric attributes, only
excluding the first two columns containing date and time
values.

2) Forest [25] : This dataset is also known as ”cover-
type”; it involves classifying pixels into seven forest
cover types using attributes like elevation, aspect, slope,
hillshade, soil type, and more. The dataset contains raw
data, including binary (0 or 1) columns for qualitative
independent variables like wilderness areas and soil
types. The dataset has 581012 rows and 54 attributes.
We filtered it, taking only the first ten numeric attributes
as in [10], [12], since the other attributes in the data are
binary.

3) Higgs [26] : This dataset addresses a classification prob-
lem aimed at distinguishing between a signal process
that produces Higgs bosons and a background process
that does not. The data was generated using Monte
Carlo simulations. The first 21 features (columns 2-
22) represent kinematic properties measured by particle
detectors in the accelerator. The last seven features are
functions of the first 21 features and are high-level
features developed by physicists to aid in discriminating
between the two classes. This scientific dataset has 11
million rows. We use only the last 7 high-level features,
which are derived by physicists aiming to classify the
particles correctly.

In our study, we treated each dataset as a table with valu-
able insights. In our study’s scope, we substantiated that the
reproducibility and consistency across different computing en-
vironments are ensured, streamlining the setup process. Thus,
the critical first step was the configurations of Python and
PostgreSQL environments adhering to established coding prac-
tices, including the use of singleton connectivity for database
connections. This, in its turn, promotes optimal resource usage
and code maintainability.

The primary interchange with our database is the query
generation with range predicates on two or more attributes and
their execution [1]. The query is considered a d-dimensional
if non-trivial range bounds are present for d attributes. The
way our query workload was constructed is the following:
having a d dimensional dataset, we generate queries with
dimensions varying from 2 to d, excluding one-dimensional
case. With the d number of attributes in the particular dataset,
we constructed a logic of generating queries with all possible
combinations of attributes. To keep control over the high
number of generating queries, we took the subsets of attributes,
starting from attribute pairs to the culmination of including all
attributes in a single query. Each generated query structure
was run for x number of times, depending on the dataset size
and the time taken for the generation.

For a chosen set of d attributes (Ak1 , Ak2 , ..., Akd) of a
dataset, the creation of the queries was done in the following
manner. For each attribute, the domain space is established
and kept as a source for further steps of referral. Later, the
generation of uniform random values for every attribute over
the domain space has been conducted, and combined the
resulting values with randomly generated signs (” > ”, ” <
”, ” = ”, ” ≥ ”, ” ≤ ”, ” ̸= ”), saving them as predicates. As
the next step, we established the integration of the predicates

combination into our SELECT statement with the WHERE
clause, connecting them with AND based on the defined
number of dimensions in the given query.

One of the critical filtering techniques utilized was keeping
only the queries that were at least returning 1 row. This helped
to focus the study on realistic queries without considering all
the generated queries that, in some scenarios, could potentially
lead to the issue of having a majority of non-result-returning
queries. Thus, before going through the execution process,
we preformed the execution of the queries internally in the
database, making sure to exclude the ones that do not return
any rows.

The execution of each query involves an EXPLAIN ANA-
LYZE, which displays the execution plan of estimated state-
ment execution cost, which represents the planner’s guess at
how long it will take to run the statement (planning time
in milliseconds, execution time in milliseconds) [27]. The
execution process includes calculating selectivity estimation
on each query using existing techniques such as AVI and
STHoles. The resulting values later served as a comparison
base for our model outcomes.

We applied the log-transformation for training labels gen-
eration, using base 2, to the selectivity value act(qi). The final
estimation, est(qi) is obtained at estimation time by applying
an inverse transformation to the model prediction. Despite
the fact of transformation being simple, it makes the use of
generic regression techniques possible for problem domains
such as selectivity estimation without altering the technique’s
implementation details — and this is due to the possibility
of selectivity variation across queries being enormous and
relative metric is more relevant and the focus on relative error
is increased. When the regression models perform well, we
usually anticipate them to produce low mean-square error
(MSE) across all queries. As an example, for two queries
q1 and q2 with actual selectivity values act(q1) = 46882 and
act(q2) = 552096, using these selectivity values act(qi) directly
as training labels, the model could predict est(q1) = 46000 and
est(q2) = 500000 rather than est(q1) = 45500 and est(q2) =
550000. It implies, this often yields high relative error for q2

and low relative error for q1, since the method is forced to
minimize the difference between log act(qi) and log est(qi) by
using log transformed labels, i.e.,

|log act(qi)− log est(qi)| =
∣∣∣∣log(act(qi)

est(qi)

)∣∣∣∣ = |log(ei)|

which should lower q-error (generally speaking, relative error).
The equation below represents the Mean Squared Error

(MSE) between the actual selectivity and the estimated se-
lectivity for each query qi in the test set Stest in the log-
transformed space.

1

|Stest|

|Stest|∑
i=1

[log act(qi)− log est(qi)]
2
=

1

|Stest|

|Stest|∑
i=1

[log ei]
2

A low value of the expression indicates that the logarithm
of the estimated selectivity log est(qi) closely matches the

logarithm of the actual selectivity log act(qi) for most queries
in the test set, which in turn means that the estimation process
is accurate.

Noting that minimizing max(ei) is equivalent to minimizing
the worst-case q-error, and minimizing the mean of log(ei)
is comparable to minimizing the geometric mean of q-error
[1]. So the optimization for just one of these could lead to
undesirable results for another. Both objectives can be met by
minimizing the mean squared log(ei), as during the average
calculation larger q-errors get more weight.

B. Comparative Techniques for Selectivity Estimation Problem

For comparison we used the techniques listed below.
1) AVI, is the most common and widely used technique

for most database systems. As mentioned earlier in the
article, it is based on the assumption of the distributions
of individual attributes Ai are independent of each
other regardless of the actual data dependencies [28].
The data distribution of each attribute is approximated
separately using any of the one-dimensional histograms
or other techniques. One of the advantages of this
approach is that it is possible to use for good-quality
one-dimensional histograms, which are not expensive
to compute, store, and maintain. Although this is the
traditional technique for selectivity estimation, it is also
known that the assumption almost always provides an
underestimate for correlated attributes resulting in ap-
proximate joint data distribution [29]. When the tuples
of a relation of attributes are organized into groups ac-
cording to their values in one of the attribute, within each
group, the distribution of values in the other attribute is
identical up to a constant factor [29]. This in its turn
results in miscalculation and underestimation.

2) STHoles [9], a ”workload-aware” state-of-the-art multi-
dimensional histograms technique that is known for its
effectiveness in accurate multi attribute query selectivity
estimation. The histograms are constructed according to
the analysis of the query results. This technique uses
bucket nesting to capture regions of the data domain
with close-to-uniform. Buckets are allocated where it
is most needed based on the workload, which in its
turn lead to accurate query selectivity estimations [9].
In general, this approach is considered to be better
than heuristic assumptions and lots of multidimensional
histogram techniques including AVI. Nevertheless, when
having large dimensions of STHoles results in large
errors, even when using huge number of buckets (i.e.
3000) and larger estimation time.

3) KDE [12], Kernel Density Estimator which uses feed-
back queries for improving the quality of estimation
for any given data. The state-of-the-art for selectivity
problems are multidimensional histograms, which offer
good quality estimates, they have shortcomings of often
being complex to construct and sometimes impossible
to maintain. KDE is treated as alternative to those
techniques, and it uses a random sample to calculate

the selectivity values by averaging local probability
distributions (also known as kernels) that are centered
on the sampled items. KDE model is simple and has
been proposed by several writers [10], [30] as range
selectivities’ estimation method as it also has statistical
advantages [31]. However, currently available KDE-
based selectivity estimators still need to be developed
and are can hardly compete with the most advanced
multidimensional histogram techniques in use. In our
study we used the KDE with SquaredQ loss function
and Batch variant for bandwidth optimization by the
motivation of the reference article.

C. Metrics Selection

To assess the accuracy of our model M, we use a test set
of queries Stest and q-error [7]. The choice of q-error is made
based on its relativity and symmetricity, which makes it a
perfect suit for our purposes [6], [13]. For each query q in the
test set Stest, we calculate the q-error using the formula:

ei = max

(
est(qi)
act(qi)

,
act(qi)
est(qi)

)
Here, act(qi) represents the actual selectivity of the query, and
est(qi) represents the selectivity estimated by our model. We
assume that act(qi) ≥ 1 and est(qi) ≥ 1. To evaluate the overall
accuracy of our modelM across all the test queries Stest, we
calculate the geometric mean of the q-error values, since it
is better at handling outlier errors compare to the arithmetic
mean.

D. Models Training Setup

The appropriate training setup employed to optimize the
performance of the explored models (neural networks, tree
ensembles, or potentially linear regression models) is the
crucial step in achieving accurate selectivity estimation results.
The main steps performed for the training preparation for our
study has the following construction:

• Data Preparation: We loaded the dataset containing query
features and corresponding labels. The feature matrix
consists of lower and upper bounds of queries, and the
label vector contains selectivity values.

• Regression Model Training: Several regression models
were trained using scikit-learn, such as Linear Regres-
sion, Elastic Net.

• Neural Network Training: Leveraging PyTorch, we em-
ployed mini-batch gradient descent to train a neural net-
work. The architecture included input, hidden, and output
layers. We utilized the Rectified Linear Unit (ReLU)
activation function for the hidden layer.

– We compared the selectivity estimations resulting
with the following models: Linear Regression, Elas-
tic Net, Fully Connected Neural Network (FCNN),
Decision Tree Regressor, Random Forest Regressor,
Gradient Boosting Regressor, Support Vector Regres-
sor, K-Neighbors Regressor

• Model Evaluation and Prediction: We evaluated the
trained models using the metrics: MSE, R² Score and
Geometric Mean Q-Error.

To train a regression model, a collection of queries labeled
with actual selectivities and optionally the Cost Estimation
(CE) feature values are being used. Past query execution
results serve as valuable source for collecting training data
without the addition of extra expense. Regression models are
similar to query-driven methods proposed previously. In order
to bootstrap the method before getting external queries, we can
take into account instances of generating training examples.
However, collection of actual selectivities necessitates the
execution of large set of queries over the data, which is
resource-consuming and may take up to (#rows x #queries)
operations since queries arbitrarily overlap [1]. Nevertheless,
several strategies can be employed to reduce latency.

IV. RESULTS AND EVALUATION

In the study, the evaluation was done on the performance
of various regression models for selectivity estimation on the
datasets. It was based on Mean Squared Error (MSE), R-
squared (R2) score, and Geometric Mean Q-Error metrics.
Based on the evaluation, we observed the following:

• MSE and R2 Score: Among the models evaluated, the
Decision Tree Regressor performed the best, with the
lowest MSE and highest R2 score.

• Geometric Mean Q-Error: The Linear Regression models
exhibited the lowest Geometric Mean Q-Error, indicating
better overall performance in terms of selectivity estima-
tion.

Considering the overall performance metrics, the Decision
Tree Regressor model fits the best for selectivity estimation
problem due to its lower R and MSE scores, indicating more
accurate selectivity estimation. The second best is the Random
Forest Regressor with almost similar features.

Fig. 3: Model Performance Evaluations on a dataset

V. CONCLUSION AND FUTURE WORK

This capstone thesis explored the application of standard
regression techniques to the problem of selectivity estimation
of range predicates. We discovered diverse techniques avail-
able for estimation optimization and experimentally compared

those techniques with regressions. We carried out in-depth
analyses of multiple datasets with an emphasis on database
system performance. With extensive empirical evaluation over
those datasets, we showed that the accuracy of regression
models is significantly better than other existing methods. We
concluded that the learning based approach plays significant
role for the use of database systems due to its properties such
as accuracy and small memory footprint. Future work could
potentially go in a number of interesting directions, in our
opinion. These include the creation of combined executions
of learned models and existing techniques, which could result
in increased development and precision; integration and model
construction on various database systems; automated handling
of attribute subsets and join query handling, etc.

REFERENCES

[1] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri,
“Selectivity estimation for range predicates using lightweight models,”
Proceedings of the VLDB Endowment, vol. 12, no. 9, pp. 1044–1057,
2019.

[2] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al., “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Foundations
and Trends® in Databases, vol. 4, no. 1–3, pp. 1–294, 2011.

[3] S. Chaudhuri, “Query optimizers: time to rethink the contract?,” in
Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data, pp. 961–968, 2009.

[4] “Understanding optimizer statistics with oracle database 18c.”
https://www.oracle.com/technetwork/database/bi-datawarehousing/
twp-stats-concepts-0218-4403739.pdf, Feb 2018.

[5] “Postgresql documentation.” https://www.postgresql.org/docs/current/
row-estimation-examples.html, Feb 2024.

[6] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper,
and T. Neumann, “Query optimization through the looking glass, and
what we found running the join order benchmark,” The VLDB Journal,
vol. 27, pp. 643–668, 2018.

[7] G. Moerkotte, T. Neumann, and G. Steidl, “Preventing bad plans by
bounding the impact of cardinality estimation errors,” Proceedings of
the VLDB Endowment, vol. 2, no. 1, pp. 982–993, 2009.

[8] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neu-
mann, “How good are query optimizers, really?,” Proceedings of the
VLDB Endowment, vol. 9, no. 3, pp. 204–215, 2015.

[9] N. Bruno, S. Chaudhuri, and L. Gravano, “Stholes: A multidimensional
workload-aware histogram,” in Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pp. 211–222, 2001.

[10] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi, “Selectivity
estimators for multidimensional range queries over real attributes,” the
VLDB Journal, vol. 14, pp. 137–154, 2005.

[11] M. Shekelyan, A. Dignös, and J. Gamper, “Digithist: a histogram-
based data summary with tight error bounds,” Proceedings of the VLDB
Endowment, vol. 10, no. 11, pp. 1514–1525, 2017.

[12] M. Heimel, M. Kiefer, and V. Markl, “Self-tuning, gpu-accelerated
kernel density models for multidimensional selectivity estimation,” in
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 1477–1492, 2015.

[13] M. Müller, G. Moerkotte, and O. Kolb, “Improved selectivity estimation
by combining knowledge from sampling and synopses,” Proceedings of
the VLDB Endowment, vol. 11, no. 9, pp. 1016–1028, 2018.

[14] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil, “Leo-db2’s
learning optimizer,” in VLDB, vol. 1, pp. 19–28, 2001.

[15] A. Aboulnaga and S. Chaudhuri, “Self-tuning histograms: Building
histograms without looking at data,” ACM SIGMOD Record, vol. 28,
no. 2, pp. 181–192, 1999.

[16] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “A pay-as-you-go
framework for query execution feedback,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 1141–1152, 2008.

[17] K. Guidolin, Developing the Porphysome Nanoparticle for Photody-
namic Therapy of Colorectal Cancer. PhD thesis, University of Toronto
(Canada), 2022.

[18] S. Lakshmi and S. Zhou, “Selectivity estimation in extensible databases-
a neural network approach,” in VLDB, vol. 98, pp. 24–27, 1998.

[19] H. Lu and R. Setiono, “Effective query size estimation using neural
networks,” Applied Intelligence, vol. 16, pp. 173–183, 2002.

[20] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte, “Cardinality
estimation using neural networks,” in Proceedings of the 25th Annual In-
ternational Conference on Computer Science and Software Engineering,
pp. 53–59, 2015.

[21] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper, “Learned
cardinalities: Estimating correlated joins with deep learning,” arXiv
preprint arXiv:1809.00677, 2018.

[22] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” Advances in neural information
processing systems, vol. 27, 2014.

[23] L. Chu, X. Hu, J. Hu, L. Wang, and J. Pei, “Exact and consistent
interpretation for piecewise linear neural networks: A closed form
solution,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1244–1253,
2018.

[24] G. Hebrail and A. Berard, “Individual Household Electric Power
Consumption.” UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C58K54.

[25] J. Blackard, “Covertype.” UCI Machine Learning Repository, 1998.
DOI: https://doi.org/10.24432/C50K5N.

[26] D. Whiteson, “HIGGS.” UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C5V312.

[27] “Postgresql documentation 2024a.” https://www.postgresql.org/docs/
current/sql-explain.html, Feb 2024.

[28] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das,
“Multi-attribute selectivity estimation using deep learning,” arXiv
preprint arXiv:1903.09999, 2019.

[29] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the
attribute value independence assumption,” in VLDB, vol. 97, pp. 486–
495, 1997.

[30] B. Blohsfeld, D. Korus, and B. Seeger, “A comparison of selectivity
estimators for range queries on metric attributes,” in Proceedings of the
1999 ACM SIGMOD international conference on Management of data,
pp. 239–250, 1999.

[31] D. W. Scott, Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons, 2015.

