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Abstract

This paper explores the application of Physics-Informed Neural Networks

(PINNs) in both experimental and theoretical physics, as evidenced by a com-

prehensive review of the relevant literature. It includes numerical simulations

and real-world experiments conducted on synthetic and empirical datasets. The

synthetic dataset was generated using a numerical method with a fixed seed to

ensure reproducibility. Specifically, the focus is on light-matter interaction dy-

namics under varying external conditions, such as different electric fields. Various

neural network architectures were employed to construct PINNs, which were then

used to predict the complex dynamics of physical phenomena, such as the liq-

uid crystal behavior of molecules during reorientation. The architectures utilized

range from simple deep neural networks to more computationally intensive dense

networks, with the latter providing more precise results despite being heavy for

training. The paper presents the outcomes associated with different initial pa-

rameters of the used architectures, highlighting the advantages and drawbacks of

each approach. Due to the extensive data involved in the experimental part of the

research, the experimental data, being heavy, can be found following this link:

MEGA link. Additionally, all capstone project-related files, including Jupyter

notebooks, Python files, result images, and videos, are available in this GitHub

repository: GitHub Repository.
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Chapter 1

Introduction

As modern science progresses, it reveals solutions to complex problems such

as big data analysis, prediction of dynamic systems, and the application of these

results across various industries, particularly in science. Experience has demon-

strated that a scarcity of data leads to inadequate predictions, thereby restricting

the use of various models in several scientific fields, including physics, dynamic

systems predictions, biological systems behavior, and engineering systems model-

ing (Raissi et al., 2019). Notably, in experimental physics, a data deficiency cre-

ates barriers that limit the deployment of contemporary machine learning models,

slowing the field’s advancement. However, recent advancements in spatiotempo-

ral deep learning have enabled scientists to develop models with high predictive

power using a limited amount of training data. The primary strength of these

models lies in their incorporation of the ordinary and partial differential equations

observed in phenomena. These equations, often called state equations, describe

numerous physical systems and enhance the robustness and predictive accuracy

of the models (Raissi et al., 2017). Known as physics-informed neural networks

(PINNs), these models have gained widespread acceptance and usage in scientific

research for their precise dynamic predictions and potential to substitute some

numerical methods. The distinct nature of these models stems from their integra-

tion of the aforementioned differential equations into the model’s loss function,

which provides flexibility and insights into the underlying physical dynamics.

In the scope of this research, the architecture of the models previously men-

tioned was utilized to predict the dynamics of complex physical systems involving
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light-matter interactions. The experiment involved observing the dynamics of a

homeotropic-aligned liquid crystal cell covered with bismuth silicate oxide (BSO)

crystal under the influence of an external field. This setup included a laser di-

rectly illuminating a digital micromirror device (DMD) screen, which in turn

reflected the laser beam onto the liquid crystal (Barboza et al., 2012). BSO is

characterized as a yellowish, high-efficiency photoelectric photoconductor with ro-

bust performance. Homeotropic alignment in liquid crystals occurs when rod-like

molecules orient perpendicularly to the substrate surfaces. A digital micromirror

device (DMD) is a semiconductor-based optical switch utilizing thousands of tiny

mirrors to precisely control light patterns in applications such as projectors and

optical imaging systems (Carvalho et al., 2020). The components described form

a nonlinear optical system, supplemented by other optical elements and a special

camera to record the internal dynamics of the liquid crystal, providing an exper-

imental dataset (Fu et al., 2022). This dataset was employed to train the PINN

models. Due to the computationally intensive nature of working with experi-

mental data compared to synthetic data, the precision of these models was also

tested using synthetic data. To create a synthetic dataset, numerical methods

were employed to analytically solve the well-known partial differential equation,

the complex Ginzburg–Landau (CGL) equation (Aranson and Kramer, 2002).

This equation describes the behavior of dynamic systems undergoing nonequi-

librium transitions, capturing the dynamics of amplitude and phase of waves

in various physical contexts. The following chapters will delve deeper into the

content above and further explore the results.
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Chapter 2

Literature Review

2.1 Introduction to Physics-Informed Neural Net-

works

As previously outlined, the core of this research involves Physics-Informed

Neural Networks (PINNs), which merge deep learning with physics through the

utilization of deep neural networks and state equations (Raissi et al., 2019). The

essential concept focuses on embedding these state equations directly into the

neural network’s loss function. This method is effectively supported by advanced

computational frameworks, notably Pytorch, using its Autograd library to model

these equations. The specific problem addressed exhibits complex spatiotemporal

behavior and has the following form:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T ] (2.1)

Where N [·] is a nonlinear differential operator, u(t, x, y) denotes the hidden

solution, and Ω is a subset of RD. The hidden solutions are generally derived

with the help of various numerical methods. In this research case, the exponential

time differencing method was utilized in conjunction with the fourth-order Runge-

Kutta method (Garćıa-Morales and Krischer, 2012). So, the described methods

are nothing else but discrete time models. Finally, the derived state equations

should be integrated into the PINNs’ loss function, which has the general form

below.
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L = LNN + Lphysics (2.2)

Where LNN represents the MSE measuring the difference between the actual

and predicted states, and Lphysics represents the loss associated with the actual

physical system. The physical system loss has the following form

Lphysics = ut +N [u] (2.3)

The NN’s loss function has the following form

LNN =
1

N

N∑
i=1

|u(ti, xi, yi)− ui|2 (2.4)

2.2 PINNs different architecture

During the research, various architectures were explored, including PINNs

with underlying fully connected and dense networks. Below, the fully connected

neural network embedded into the PINN is presented.

Figure 1: PINN Training Cycle
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The schema illustrates the learning flow of the constructed PINN model, high-

lighting key components: the neural network, the application of automatic dif-

ferentiation operators on network outputs, the inclusion of physics-informed loss

components, and the mini-batch gradient descent process.

The DenseNet (Zhu and Newsam, 2017) architecture that is utilized in our

experiments is presented in the provided schema below.

Figure 2: DenseNet Architecture

The primary benefit of DenseNet is its capability to predict complex dynam-

ical systems, as each layer connects with all preceding ones. This architecture

clearly outperforms the Fully Connected Neural Network, as detailed in the re-

sults chapter.

2.3 Light-Matter Interaction: Theoretical & Ex-

perimental Interpretations

Light-matter interaction describes how electromagnetic radiation affects mat-

ter, specifically influencing the partial reorientation of liquid crystal molecules

(Goldstein, 2017). This interaction is crucial for numerous modern technologies

and natural phenomena, including photosynthesis and optical communications.

The study explores this interaction by simultaneously addressing both theoretical

modeling and experimental aspects. Theoretical investigations involved modeling
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the interaction between light and liquid crystals, as detailed in Section 2.2, and

numerically solving the state equation to meet initial and boundary conditions.

This approach enhances the understanding and prediction of experimental out-

comes without their physical execution. Additionally, it facilitates the collection

of synthetic datasets for training future models.

On the other hand, liquid crystal and light interactions can be examined

experimentally using nonlinear optical systems and laser experiments. These are

crucial for validating model predictions and generating new empirical datasets,

which serve as complex training sets for models.

Numerous state equations describing light-matter interactions have been dis-

covered over the past decades. This study focuses on the CGL equation (Aranson

and Kramer, 2002), pivotal in providing a mathematical framework for describing

phase transitions in light and liquid crystal interactions within optical nonlinear

systems. It has the following form:

∂tA = µA+ (1 + ib)∆A− (1 + ic)|A|2A (2.5)

Where A is a complex function of time and space, b and c are the real pa-

rameters characterizing linear and nonlinear dispersion, and µ is a bifurcation

parameter. CGL equation models the dynamics of complex fields, including but

not limited to the effects of nonlinearity, coherence, and dispersion, based on the

macroscopic properties of materials.
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Chapter 3

Methodology

3.1 Synthetic & Experimental Datasets Repre-

sentation

Before discussing the models, an explanation of the datasets utilized is nec-

essary. As indicated in section 2.3, synthetic and experimental datasets were

created. This section delves deeper into the synthetic dataset’s creation and

usage. The synthetic dataset was generated using various numerical methods, in-

cluding exponential time differencing and fourth-order Runge-Kutta, which aided

the analytical solution of the CGL equation. In the Fourier space, the equation

has the following form.

∂tÂ = (1− k2(1 + bi))Â−F [(1 + ic)|A|2A] (3.1)

where Â is the representation of the state in the Fourier space. Let’s denote

the first part of the right-hand side with q and the second part of the right-hand

side with N . After applying the aforementioned numerical schema, the following

approximation for the CGL equation will be observed:

Ân+1 = Âne
qh +Nn

(1 + hq)eqh − 1− 2hq

hq2
+Nn−1

−eqh + 1 + hq

hq2
(3.2)

The numerical schema illustrated demonstrates the computational process of the
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CGL equation using specified methods. The corresponding code schema inputs

simulation-related parameters such as the time domain, spatial coordinates, grid

point numbers, and constants specific to the equation, ultimately yielding the ana-

lytical solution for the CGL equation within the defined domains. Although some

solutions include synthetically created diffusion effects, such as planar flows, ad-

justing certain parameters to meet well-known criteria can induce spatiotemporal

chaos. The generation of synthetic data occurs through the sequential execution

of specified numerical methods, ensuring that identical datasets are reproduced

when the codes are run with unchanged initial and boundary conditions. The fig-

ure below displays generated data points that exhibit planar deterministic flows

and non-equilibrium chaos.

Figure 3: Synthetic Dataset

Experimental datasets were collected during real experiments utilizing a non-

linear optical system with a BSO liquid crystal cell. A series of experiments

captured spatio-temporal datasets from interactions between light and the liquid

crystal cell under an external field. A specialized polarization camera recorded

these interactions, storing the information on a computer as a sequence of frames.

Ultimately, all collected datasets were used to train models.
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3.2 Experimental Dataset Mapping to Digital

States

The experimental analysis yielded intensities under different polarization an-

gles: 0 degrees, 45 degrees, 90 degrees, and 135 degrees. These intensities corre-

late with the state of the liquid crystal based on established theoretical relation-

ships. A specialized polarization camera was utilized to capture these intensities.

This camera includes numerous micro-polarizer filter arrays; each 2x2 pixel array

records a specific intensity, with each pixel dedicated to a single intensity reading.

The key relationship connecting the intensities to the liquid crystal state involves

the azimuthal angle (ψ), and theta, which represents the projection angle of the

director on the x-y plane.

n = {cosψ sin θ, sinψ sin θ,

√
1− cos2 ψ sin2 θ − sin2 ψ sin2 θ} (3.3)

The azimuthal and projection angles have the following forms below.

ψ = arctan

(
ny
nx

)
(3.4)

θ =

√
∆

k
(3.5)

where ∆ is the phase retardance, and k is the wave number, and nx and ny are

the projection of the liquid crystal on the x-y plane. In conclusion, the CGL state

can be constructed from the previously mentioned relations in the following form.

A = nx + iny (3.6)

3.3 Utilized Loss Functions for PINNs

This section discusses the loss functions utilized within the scope of this re-

search. The general form of the custom loss function was introduced in Section

2.1, with experimentation conducted on various custom loss functions tailored to
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specific problem needs. Initially, the following loss function was employed:

L = LNN + Lphysics (3.7)

where LNN is defined as in Equation (2.4), and Lphysics is given by:

Lphysics =
1

Nf

N∑
i=1

|f(ti, xi, yi)|2 (3.8)

The function f is described by:

f = µA−∆A+ |A|2A (3.9)

This equation represents the residuals of the CGL equation with coefficients

b = c = 0. This is the simplest loss function utilized. However, this form some-

times fails to accommodate all the flow fluctuations that the data might exhibit.

The capabilities of the custom loss function have been enhanced through the in-

corporation of additional components, thus making the final loss function more

robust. The augmented loss function is expressed as the following loss function:

L = LRI + LMS + Lphysics (3.10)

Here, LRI represents the Mean Squared Error (MSE) between the product of

the real and imaginary parts of the target dynamics and the predicted state, and

LMS refers to the MSE for the modulus squares of the target and predicted states.

Given that the state in the CGL equation is complex, the configuration of these

loss functions provides more insights into the underlying dynamics, enhancing

the robustness of the models. In the context of physics, computed quantities

such as the modulus square of the state convey intensity information, thereby

increasing the flexibility of the models. Furthermore, the LRI component sup-

plies all necessary information about the state dynamics under certain boundary

conditions.
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3.4 FCNN as an Underlying Neural Network for

PINN

This section details the first of two distinct PINNs developed, each with dif-

ferent underlying architectures. The focus here is on the FCNN, which comprises

interconnected neurons in successive layers. This structure ensures comprehensive

information processing from input to output, with each neuron connection char-

acterized by a weight that adjusts during training to minimize output prediction

errors. FCNNs are typically employed in classification, regression, and pattern

recognition tasks where input features exhibit significant interdependence.

This research explored various configurations of neurons, hidden layers, and

activation functions. The hyperbolic tangent was initially employed as the nonlin-

ear activation function across all network layers. However, due to its instability -

which impeded accurate predictions of the complex dynamics between liquid crys-

tals and light - the Softplus function was adopted instead. The Softplus function,

defined as

SoftP lus(x) =
1

β
log (1 + eβx) (3.11)

with a default β = 1, serves as a smooth approximation of the widely recognized

Rectified Linear Unit (ReLU) function. This function ensures that the output

remains positive and conducive to the needs of our model.

Figure 1 illustrates the workflow of our FCNN-based model. The neural net-

work takes spatiotemporal parameters as inputs and outputs the estimated states

of the CGL equation. Subsequent stages involve computing necessary partial

derivatives from these approximations. These computed values are then utilized

in the custom loss computation phase, which incorporates residuals of the CGL

equation to form a comprehensive loss function. This function encapsulates both

the neural network’s functionality and the underlying physical processes.

Model training is bifurcated into two stages. The initial phase seeks to iden-

tify states that satisfy the CGL equation without incorporating external field

information, focusing solely on the internal dynamics. The second training phase

integrates bifurcation parameter data to facilitate data-driven discovery. This pa-
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rameter, dependent on spatiotemporal coordinates, plays a critical role in defin-

ing the system’s behavior under varying conditions. Given the extensive datasets

available, all training sessions were conducted in batches, each comprising 10000

data points, optimizing the custom loss function to identify bifurcation param-

eters that satisfy the CGL equation. This training methodology is consistently

applied across all models, with outcomes presented in Section 4.1.

3.5 DenseNet as an Underlying Neural Network

for PINN

This architecture is particularly advantageous for uncovering the latent dy-

namics within the data. Due to its unique design, which features connections from

each layer to all subsequent layers, DenseNet facilitates comprehensive informa-

tion flow through the network. This type of connectivity enhances the robustness

and flexibility of the model.

The inputs to the DenseNet are identical to those of the FCNN described

earlier. Similarly, the output remains consistent with the FCNN, generating

approximated states for the CGL equation. Notably, the states produced by

DenseNet architecture demonstrate a closer alignment with the empirical ground

truths, enhancing the model’s predictive accuracy.

An instance of this network can have the following configuration: a single

input layer, three hidden layers, and an output layer. The input layer processes

spatiotemporal coordinates comprising spatial (x and y) and temporal (t) com-

ponents by concatenating them into a unified 3D tensor.

The network’s output is similarly structured as a 3D tensor, maintaining the

same spatiotemporal characteristics as the input. This architecture shares the

data flow process with the FCNN, involving the computation of derivatives and

initiating a data-driven discovery process. The performance and results of this

network are detailed in Section 4.2.
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Chapter 4

Results & Discussions

4.1 FCNN-PINN Results

This section presents significant outcomes from numerous experiments con-

ducted with the FCNN-based PINN. Both synthetic and experimental datasets

served as inputs. The synthetic dataset exhibits specific characteristics, and the

architectural details of the model are further elaborated. Figure 4 illustrates the

loss curves under different learning rates.

Figure 4: FCNN Losses

Figure 5, presented below, displays comparative visualizations of the original

dataset alongside predictions made by the model. This offers a clear depiction of

the network’s predictive accuracy and its architectural effectiveness in handling
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complex datasets.

Figure 5: FCNN Results

In the Figure 6 below is shown the learning curve of the µ training

Figure 6: FCNN bifurcation parameter training curve
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Different datasets were used, yielding the results shown below in Figure 7.

Figure 7: FCNN-PINN Prediction on Different Dataset

Figure 8 shows the learning curves for the above dataset in conjunction with

the µ training.

Figure 8: FCNN-PINN Learning Curves with the µ Learning Curves
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Figure 9 shows the prediction results on the experimental dataset.

Figure 9: FCNN-PINN Predictions on the Experimental Dataset

As expected, the results on the experimental dataset will not be as good as

those of the synthetic data case. The evaluations of these results will be presented

in section 4.3.

4.2 DenseNet-PINN Results

Results from multiple experiments conducted using the DenseNet-PINN are

presented here, and synthetic and experimental datasets are used. The synthetic

dataset exhibits specific characteristics. Below, Figure 10 displays a visualization

comparing the original dataset with predictions made by this model.

Figure 10: DenseNet-PINN predictions on the synthetic dataset
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Figure 11 shows the learning curves of the model with the µ parameter learning

curves.

Figure 11: DenseNet-PINN learning curves with the µ learning curves

Results on the synthetic dataset are presented below in Figure 12.

Figure 12: DenseNet-PINN prediction on the bigger dataset

As previously mentioned, the results of the empirical dataset do not match

the quality of those from the synthetic dataset. The results are shown in Figure

13.
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Figure 13: DenseNet-PINN prediction on the experimental dataset

The evaluations of these results are detailed comprehensively in section 4.3 of

the document. This section will provide an in-depth presentation and analysis of

the findings.

4.3 Results Evaluations

The analyses presented in Sections 4.1 and 4.2 found that the DenseNet-

PINN outperformed the FCNN-PINN. The simpler architecture of the FCNN-

PINN produces predictions that approximate the ground truth closely, yet some

discrepancies remain. This observation is also applicable to the network’s learn-

ing process. The learning curves indicated a reduction in loss, although it did

not converge to the local minimum of the function. In scenarios of lower com-

plexity, the performance of this network was deemed satisfactory. However, in

more intricate scenarios, its efficacy was inferior to the subsequently introduced

DenseNet-PINN.

In contrast, the DenseNet-PINN consistently outperforms the FCNN-PINN

across all aspects and datasets. This indicates that the predictions generated by

this model more closely resemble the original ground truth data. Specifically,

this neural network predominantly captures the complex dynamical fluctuations

observed in both synthetic and experimental datasets. The intricate structure

of the DenseNet-PINN, characterized by its dense connections, facilitates com-

plex predictions. Consequently, this architecture proves to be more suitable for

dynamic prediction tasks, as demonstrated within the scope of this research.
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Chapter 5

Conclusion & Future Work

Based on the insights derived from the analyses presented in the scope of this

capstone section, it is appropriate to conclude that PINNs adeptly encapsulate the

intricate dynamics inherent to physics-related data. These models demonstrate a

commendable capacity to manage the inherent fluctuations of the data and yield

robust predictions. Comparative evaluations indicate that the DenseNet archi-

tecture model outperforms the FCNN model. This advantage likely stems from

the complex nature of the underlying flow dynamics beyond the representational

capacity of simpler, fully connected architectures. The superior architecture ben-

efits from enhanced memory capabilities, facilitating a deeper understanding of

complex data patterns.

Both model architectures were evaluated using synthetic and experimental

datasets. Consistent with previous observations, model performance was supe-

rior on synthetic data, attributed to the relative simplicity and controlled variabil-

ity of these datasets compared to their experimental counterparts. Experimental

datasets typically incorporate numerous nonlinear elements, rendering them more

complex and mimetic of real-world conditions. Despite sharing common dynamic

features, the flow characteristics in the synthetic datasets are predominantly influ-

enced by specified simulation parameters. In contrast, experimental datasets are

contingent upon many factors, including the applied electric fields, laser intensity,

and the operational parameters of polarization cameras.
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Thus, the dynamism exhibited by the experimental datasets is substantially

greater than that of the synthetic datasets, complicating the task of making ac-

curate predictions. The analysis confirms that models are more effective when

applied to synthetic data, as opposed to experimental datasets where the predic-

tion of flow dynamics poses significant challenges.

Looking ahead, future research will involve conducting experiments with a

diverse array of loss functions to identify those that perform optimally and provide

deeper insights into the physics of the systems being modeled. Additionally,

exploring various neural network architectures will be crucial to ascertain which

configurations most effectively capture the complexities of physical datasets. The

outcomes of these experiments should be meticulously compared with the findings

discussed in previous sections. This iterative approach is anticipated to yield novel

applications for traditional neural networks in the domain of scientific machine

learning, particularly in predicting chaotic data flows in real physical systems.
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