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Abstract

Traveling has always been popular among people from all around the
world. Sometimes people face hardships traveling to their desired places
because they lack knowledge about where to travel to. They do not have
time to look through different cities and parts of the world, review the
feedback from other travelers in order to be able make decisions. Travel
Advisor allows future travelers to get a prediction for their perfect desti-
nation to travel to having a simple input of several words. Being trained
on about 20,000 distinct and unique text data points, the Travel Advi-
sor is capable to predict a travel destination from 12 different famous
cities among travelers. Travel Advisor predicts based on a text input of
activities, words that a future traveler inputs. Usually the input includes
activities that travelers would like to do while being on a vacation.
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Chapter 1

Introduction

Travel Advisor is a data-driven project that predicts destinations for
future travelers with an input of just a few words. It uses data points
scraped from the TripAdvisor’s website and predicts one of the top 12
famous cities from the same website. The project utilizes data collected
from 12 top cities from TripAdvisor’s website list on Traveler’s Choice.
Project dataset is collected by scraping the titles from the website “at-
tractions” section for each of the cities. Datasets for each of the cities
include around 2000 values. The project will be able to predict a desti-
nation from 12 different popular cities. The travel agent’s final product
is a tool, where users input text and the travel agent gives them the city
recommendation based on the input.

Data cleaning process includes several steps:
a. Removing punctuation and numbers
b. Lowercasing everything
c. Removing stop words
d. Creating a document term matrix grouped by city
e. Visualizing the most frequent words
1. Different vectorization strategies are used in the project, after
which visualizations are created with word clouds. Several functions are
created to make the pre-processing steps easier as well as make word
clouds with each city’s country form on the map.
2. Modeling part of the project includes:
a. Baseline Naive Bayes Model with 4 different iterations
b. Random Forest Model (with and without lemmatization)



Chapter 2

Introduction to Data

The data used for this project is fully scraped from the TripAdvisor’s
website. When visiting the website and navigating to the top attractions
list for each of the 12 cities, the website pulls up the most famous attrac-
tions to visit for the specific inputted city. Several pages of attractions
per each of the cities are being scraped to collect the attractions as data
points.

Table 2.1 shows the list of all 12 cities where the top attractions are col-
lected from.

Top Attractions | City, Country
Attraction list | London, UK

Attraction list | Paris, France

Attraction list | Crete, Greece

Attraction list | Bali, Indonesia
Attraction list | Rome, Italy

Attraction list | Phuket, Thailand
Attraction list | Sicily, Italy

Attraction list | Majorca, Balearic Islands
Attraction list | Barcelona, Spain
Attraction list | Istanbul, Turkey
Attraction list | Dubai, United Arab Emirates
Attraction list | Vienna, Austria

Table 2.1: For each of the 12 cities the number of top attractions is differ-
ent, but the function is created to pull up values from the same number
of pages of each city attractions.



The table shows the number of top attractions collected/scraped
for each of the cities. The function used for scraping data points is uni-
versal for all the cities.

2.1 Exploratory Data Analysis

The project’s most relevant part is to collect relevant data and to

figure out which models can be tested on the scraped data points.

N City Country Total Number of Attractions Collected
1 London United Kingdom 1620
2 Paris France 1620
3 Crete Greece 950
4 Bali Indonesia 1620
5 Rome Italy 1560
6 Phuket Italy 1511
7 Sicily Italy 1560
8 | Majorca Balearic Islands 1137
9 | Barcelona Spain 1620
10 | Istanbul Turkey 1680
11 Dubai United Arab Emirates 1590
12 | Vienna Austria 1200

The final dataset combines all the scraped data points
from the 12 cities and here are some features of the final dataset:
total number of data points is 17668 and total number of duplicated

values is 1200.




Attractions per city for the initial datasets are shown below.
To visualize the dataset containing data points from all the 12
cities, Figure 2.1 shows the information. It also displays the class weights
imbalance between cities.
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Figure 2.1: The figure visualizes the data points collected for each of the
cities.



The next steps that have been done include the processes of:
1. Data Cleaning 2. Preprocessing 3. Deeper Exploration.

These processes include removing punctuation and numbers,
turning all the data points into lower cased ones, removing stop words
from the dataset, creating a document term matrix grouped by city, lem-
matizing, performing count vectorization, performing tf-idf vectorization,
working with bi-grams, visualizing most frequent words, visualizing data
points with word clouds, bar plots and histograms.

Figure 2.2 below is showing a single word cloud created for Bali,

Indonesia with TF-IDF Vectorization. The same word clouds are created
for each and every city.
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Figure 2.2: The word cloud representing the figure above is for highlight-
ing our finding that tf-idf is a better vectorization technique compared
with count vectorization, since it is finding more words that are unique

to the cities. This is why it is going to be used while modeling in order
to better predict the cities.




Dubai, United Arab Emirates

trave

Figure 2.3: The final word cloud created for Dubai, United Arab Emirates
is shown below. The word cloud has the form of Burj Al Arab Jumeirah,
Dubai, a palace recognised by Lartisien for its excellence and one of the
landmarks of Dubia.

Figure 2.3 For creating the figure, we are removing noise from
the data. Since there are still lots of words in the word clouds like 'pri-
vate’, 'airport’ and 'transfer’, we want to try to take those attractions for
airport transfers out because they are causing noise in the data. After
final pre processing steps, the final word clouds are being created for
each of the 12 cities. The final figures (word clouds) for each of the 12
cities are created with the forms of famous landmarks of those cities.
As an example, the word cloud of Paris, France is created with the form
of The Eiffel Tower, the most famous landmark of Paris. Some of the
word clouds are created with the maps of the cities to better illustrate
the visualization.



Most Frequent Words: London, United Kingdom
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Figure 2.4: The figure is the result of making a graph for the most fre-
quent words occurring in the dataset of London, United Kingdom. The
figure shows the most frequent words with their frequencies.

From Figure 2.4, it can be concluded that the word “London”
appears in the dataset for London city with the most frequency. This is
true for most of the cities and it is expected since the names of attractions
include city names in their text. This figure illustrates just the example of
London, but 11 more such graphs are created for each of the cities. For
further steps of modeling, the names of each of the cities are removed
from the datasets to make sure the city names do not affect the modeling
processes.



Chapter 3

Literature Review

According to Will Koehrsen, Senior Machine Learning Engineer,
usually, when training a model on a dataset, we need to randomly split
the dataset into two separate sets: training and testing sets. After having
the real answers for the test set, we can go ahead and compare the pre-
dictions with the actual values to understand how accurately the model
performs. This same procedure is followed in the project, using the steps
followed in the source and with difference of using TFIDF features with
the classifier [ 1.

According to the source on Naive Bayes Classification in Python and
its author Shuvrajyoti Debroy, a Data Science graduate from the Mary-
land University, the Naive Bayes is a classification technique which is
based on Bayes’ theorem. Understanding the basis of Bayes’ theorem
helps to understand the model used in the project. The source notes
that according to this classification algorithm, we are trying to find out
the class which is holding the most likely appearing set of features and
attributes [ ]. According to the same source, the training set of the
dataset is used to train the model. The model is tested afterwards, but
this time on the test split set to understand its performance and accu-
racy. This is a relevant point, as when the model is trained and tested
on the exact same data, it is possible to face over-fit on the data and the
model may perform poorly on new, not seen data [ ]. The Naive
Bayes Classification used with TfidfVectorizer and stop words used in
the project supports the ideas presented in the source.

Jason Brownlee, PhD in Machine Learning, mentions that instead
of trying to figure out the probabilities of each attribute, we make an as-
sumption of them to be conditionally independent having the class value
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[ ]. This assumption is important when implementing different it-
erations with Naive Bayes Classifier. In addition, another source imple-
menting ML | Naive Bayes Scratch Implementation using Python men-
tions that Naive Bayes shows to be a very basic and effective algorithm
working perfectly with classification tasks [ ]. This is true for the
project as well since using some techniques as class imbalance, count
vectorization and bi-grams, the model iterations show to be simple and
efficient.

According to Priyanka Charak, who presents a full guide of Sele-
nium and Selenium WebDriver with Python for Web Automation Testing,
Selenium is considered to be one of the most famous and flexible web
automation testing techniques [ ]. In addition, the author notes
that Selenium WebDriver, which is the used in the project for collecting
data from TripAdvisor’s website, is the most preferable open-source tool
because it supports many programming languages.

The source presenting the background and implementation of
Vectorization, Multinomial Naive Bayes Classifier and Evaluation acts as
a full guide on model building, vectorization, evaluation of Naive Bayes
taking into consideration the class imbalance [Vec]. In the project, a sep-
arate iteration of using class weights for improving the class imbalance
is performed.

Web Program Testing Using Selenium Python: Best Practices
and Effective Approaches is a source provides with a real life example of
implementing Selenium with WebDriver [Sel]. Ttillustrates the use cases,
challenges and benefits of using this web program testing approach.

In addition, Baiju Muthukadan, in their official documentation
and full guide presents a thorough explanation of the process, using Se-
lenium, WebDriver API, Alerts, different browser WebDriver options and
many more sections [ ]. They support the technique which is used in
this project for scraping the TripAdvisor’s website and getting the nec-
essary data points.
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Chapter 4
Applied Models

Initially, the project implements preprocessing of the data to make
sure models are applied on clean data. The preprocessing steps include:

* Removing duplicates from the data points.
* Removing punctuation and numbers
* Making the data points lowercase

» Using lemmatization for preprocessing the train and test dataset
splits

* Removing stop words (Natural Language Processing (NLP) is used
with its aspect of handling stop words with the help of Natural Lan-
guage Toolkit. The reason why stop words are removed is that
words such as ‘I’, ‘and’, ‘a’, and ‘the’ and more do not really intro-
duce relevant information about the topic. By getting rid of these
words from the dataset, it is easier to identify unique and relevant
words)

* Adding city names into the list of stop words (this is done to make
sure any occurrence of the city name in the attractions column is
removed, so models work correctly)

* Visualizing the most frequent words in the datasets

4.1 Baseline Naive Bayes Model

Naive Bayes methods represent a collection of supervised algo-
rithms that are based on using Bayes’ theorem along with a “naive” as-
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sumption about the conditional independence between each pair of fea-
tures that are given the value of the class variable. Bayes’ theorem states
the following relationship, given class variable y and dependent feature
vector x; through x,:

P(y) x P(x1, ..., Xn|y)

P(y|x1,....xn) = 4.1
(]/| ! n) P(xl,...,xn) ( )
Using the naive conditional independence assumption that
P(xi|]// X1s ey xi—l/xi+1/"-/ x?”l) = P(xl|y> (42)

Starting with the models, the initial model iteration used in the project
is the Baseline Naive Bayes Model. This model ensures the dataset is
preprocessed, uses train/test splits of the dataset, uses TfidfVectorizer
and eliminates stop words including city names to make predictions.

4.2 Multinomial Naive Bayes Model with class
imbalance

Moving forward, the next iteration used in the project presents the
Naive Bayes Iteration 2, which uses class weights to improve the avail-
able class imbalance. After computing the sample weight, the model is
implemented on the already created train and test splits of the datasets.

4.3 Multinomial Naive Bayes Model with TF-
IDF vectorization

The next model iteration used in the project presents the Naive
Bayes Iteration 3. This iteration is done after finding out that in many
of the cities’ attractions list, the name of the city is already included.
Considering this as a potential issue, the project introduces new text for
this model, which does not include the city names. The same list of stop
words is used for this iteration as in the first iteration.
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4.4 Multinomial Naive Bayes Model with Count
Vectorization

The next model iteration used in the project is the Multinomial
Naive Bayes with Count Vectorization, sample weights and the same list
of stop words.

4.5 Multinomial Naive Bayes Model with Bi-
Grams

The next model iteration used in the project is the Multinomial
Naive Bayes Using Bi-Grams and the list of stop words.

4.6 Random Forest Model

Iteration 6 uses the Random Forest Model for predictions along
with Tfidf Vectorizer and initial train and test datasets. Here the project
also explores the feature importance of features. Figuring out the top
20 features from the full dataset, it becomes obvious that a lot of city-
specific words, such as ’eiffel’, the name of a tower in Paris, or general
words coming from different city datasets such as ‘tour’, ‘travel’, 'guide’
and more are among these features. In future, these kind of repeating
words can be found and eliminated.

4.7 Multinomial Naive Bayes without lemma-
tization

The final iteration uses the third iteration but without lemmatiza-
tion of the train and test dataset splits. This iteration is performed as
lemmatization version of the model is more usually more computation-
ally expensive than using the lemmatization technique.
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Chapter 5

Results

Accuracy is the first metric to be discussed, and, the simplest one.
It can be calculated by the following formula:

#correctly classified items

#all classified items (5.1)

Accuracy =

According to the scikit-learn.org website about accuracy and F1
scores [ ], "F1-score shows the harmonic mean of precision and recall,
where F1 score reaches its best value at 1 and worst score at 0”. The
formula for the F1 score is:

B 2 * TP
~ 2*TP + FP + FN

F1 (5.2)
Where TP is the number of true positives, FN is the number of false
negatives, and FP is the number of false positives.

5.1 Baseline Naive Bayes Model Results

The initial model iteration used in the project called Baseline Naive
Bayes Model, results in training accuracy of 0.816 and testing accuracy
0f 0.593. Training F1 score of the model shows the value 0f 0.815 and the
testing F1 shows 0.585. Thus, this model performs well showing around
59% accuracy score, however, the 3 classes with the lowest accuracy and
F1 scores are the cities Majorca, Rome and Vienna. In the next model,
the project ensures that the class imbalance is not affecting the model.
This issue is fixed by using class weights in the next iteration.
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5.2 Multinomial Naive Bayes Model with class
imbalance

The next model iteration used in the project called Multinomial
Naive Bayes Model with class imbalance, results in training accuracy
of 0.826 and testing accuracy of 0.594. Training F1 score of the model
shows the value of 0.826 and the testing F1 shows 0.592. Thus, this
model performs better showing around 60% accuracy score, however, in
many of these cities’ attractions text, the name of the city is included.
This may become an issue in the future. This issue is fixed by taking city
names out in the next iteration.

5.3 Multinomial Naive Bayes Model with TF-
IDF vectorization

The next model iteration used in the project called Multinomial
Naive Bayes Model without relevant stop words, results in training ac-
curacy of 0.826 and testing accuracy of 0.594. Training F1 score of the
iteration shows the value of 0.826 and the testing F1 shows 0.592. Thus,
this iteration performs similar to the previous iteration.

5.4 Multinomial Naive Bayes Model with Count
Vectorization

The next model iteration used in the project called Multinomial
Naive Bayes Model with Count Vectorization, results in training accu-
racy of 0.786 and testing accuracy of 0.581. Training F1 score of the
iteration shows the value of 0.787 and the testing F1 shows 0.577. Thus,
with count vectorization, the scores are very similar, but still lower than
with TF-IDF vectorization, therefore we will keep the TF-IDF vectoriza-
tion strategy.
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5.5 Multinomial Naive Bayes Model with Bi-
Grams

The next model iteration used in the project called Multinomial
Naive Bayes Model with Bi-Grams, results in training accuracy of 0.849
and testing accuracy of 0.397. Training F1 score of the iteration shows
the value of 0.863 and the testing F1 shows 0.429. This iteration did well
for the training accuracy, but not good for the testing accuracy. Thus,
the TF-IDF vectorization remains the best vectorization strategy for this
dataset.

5.6 Random Forest Model

The next model iteration used in the project called Random For-
est Model, results in training accuracy of 0.973 and testing accuracy of
0.592 (showing just 59 % accuracy). Training F1 score of the iteration
shows the value 0of 0.973 and the testing F1 shows 0.597. This model still
does not perform very well with the test set. It is important to note that
random forest model has 2 major flaws that will affect this model for its
specific use-case:

1. It is more computationally expensive than Naive Bayes models
(meaning takes longer to train and predict).
2. It uses a greedy algorithm, so it often favors the bigger class.
Thus, iteration 3 remains the best model.

5.7 Multinomial Naive Bayes without lemma-
tization

The final iteration uses the third iteration, using the cleaned text
data without lemmatizing it. Ultimately, this model performs very sim-
ilar to the lemmatized version of it. But here the model performs with
accuracy score of more than 60 %. Here the project shows training ac-
curacy of 0.843 (84.3 %), testing accuracy 0.608 (60.8 %). Training F1
score for the iteration displays 0.843 (84.3 %) and testing F1 is 0.606
(60.6 %).

-16 -



Chapter 6

Conclusion

The final model is the Multinomial Naive Bayes Model with TF-IDF
vectorization and without lemmatization, which provides the best accu-
racy. It is important to note that there are some small differences that
contribute to choosing Multinomial Naive Bayes Model without lemma-
tization version as the final model:

* The test accuracy and F1 scores are higher for this model compared
to the lemmatized version.

* Lemmatization version is more computationally expensive than get-
ting rid of the lemmatization.

Therefore, the final model is the iteration 3 (Multinomial Naive Bayes
Model with TF-IDF vectorization) without lemmatizing the text. This can
predict a destination with 60% accuracy and around 60% F1 score. The
text data based on which thus model was implemented is not lemmatized,
but is lowercased with stopwords and city names removed from it.

-17 -



Chapter 7
Future Work

The project plans include some future work to make the best use of
Travel Advisor. The main points of adding future work include:

* Include even more data of more than 12 popular cities from the Tri-
pAdvisor’s website and have the models work on more data points.
This is for the thorough application of the project including more
than 50 different famous cities to visit across the world, so people
have better advice

* Include reviews left by people about attraction places of cities and
take keywords from these reviews to add them as features of the
cities. This is for users who look for places to visit and can rely on
others’ review about the city being for example dangerous or safe.
This way the users will get more information
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