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Abstract — Identifying somatic mutations in tumor genomes is
crucial for cancer diagnosis, treatment, and research.
Traditional mutation-calling approaches typically require
paired samples of tumor and normal tissues to differentiate
between the somatic and germline variants. This paper
presents a novel supervised learning approach for mutation
calling that relies solely on tumor genome data, eliminating the
need for normal sample sequencing which reduces cost and
saves time. Here we use LightGBM model to perform the task
of classifying the mutation types in tumor samples using a
combination of genomic features. Our method involves
extensive training using a dataset of known mutations from
cancer patients, which allows the model to learn the
distinguishing characteristics of somatic and germline
variants. In This paper you will see how different approaches
and designs have improved the performance. We also illustrate
the robustness of our approach across various cancer types and
calculating tumor-mutational burden (TMB). This innovation
not only reduces the sample requirements and cost of genomic
analysis but also has significant implications for precision
oncology, where rapid and accurate mutation profiling is
critical for personalized treatment strategies.

Index Terms—Tumor-Only Mutation calling, Tumor
mutation burden, Light Gradient Boosting Machine,
Classification, Somatic, Germline.

1. INTRODUCTION

Variant/Mutation calling is the process of identifying
mutations in the DNA sequence. In our case, we consider
single nucleotide polymorphisms (SNPs) which include
insertions, deletions, and substitutions. Variant calling is
essential in cancer genomics, where it is used to identify
mutations driving cancer development. This information is
crucial for understanding cancer pathways, developing
targeted therapies, and personalizing cancer treatment by
improving drug efficacy and reducing side effects. Humans
share more than 99% of their genome sequence indicating a
high degree of genetic similarity among individuals.
However, each individual has an estimated 3 to 4 million
single nucleotide variants (SNVs) that contribute to genetic
diversity. This difference arises from two main sources. It
could be inherited from our parents through the germ cells,
and is the reason why one person is different from one
another. This type of difference is called germline variants.
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Secondly, it could arise within the cell and tissues
throughout individual’s lifetime due to environmental
factors or other cellular processes, which we don’t transmit
to the next generation, and is called Somatic variants. These
somatic mutations lead to the development of tumors and
identifying them makes it a useful target for personalized
cancer therapies.

The traditional approach for finding these somatic
mutations include extracting the DNA of Normal (non-
cancerous source) and Tumor cells of the patient and
sequencing it. We then run a mutation caller (Strelka,
Mutect, GATK etc.) which detect the differences of the
nucleotides between the normal and the tumor genome.
These differences are considered the somatic mutations.
Moreover, to identify the germline variants the mutation
caller compares the tumor and a universal human reference
genome and gets the differences. from that it filters out the
somatic variants that we found earlier, and we will be left
with the germline mutations. The mutation caller also
identifies false positives which are the nucleotides that are
not mutations, but it has identified as one.
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Figure 1. Paired tumor-normal mutation calling

II. RESULTS AND DISCUSSION

With our approach we have created a model that could
identify and classify the mutation as germline, somatic or
false positive (FP). The data is in a tabular format which
initially had 27 columns (features), 36,482,012 rows where
each row is a single mutation, covered 2020 patients that
had been diagnosed with 119 different cancers. The features
are information that describe the mutation such as
Tumor_VAF, t_depth, POPAF, purity of the sequence and



etc. We processed the data by joining the tables of different
features, cleaning duplicates, filtering out bad samples,
standard-scaling and one-hot encoding the corresponding
columns and fixing data related issues. After that phase we
were left with 29,449,541 rows (mutations) and 92 columns
which were ready to go into the model.

For the training approach we used Leave-one-patient-out-
cross-validation (LOPOCV), Leave-one-group-of-patient-
out-cross-validation (LOGOPOCV) and Leave-one-
diagnosis-out-cross-validation (LODOCV). We have
chosen these approaches so that we don’t split mutations of
same patients in the different sets, which is more realistic to
the problem that it will solve in real clinical case.

Counts Percentage (%)

Class
Germline 17317262 58.80
FP 11898876 4040
Somatic 233403 0.79

Figure 2. There is a huge imbalance within the distribution
of the classes.

The main evaluation metric chosen for the model was
Precision recall area under the curve score (PR AUC). This
metric is particularly useful here as we are dealing with a
highly imbalanced dataset. And our focus is on the
performance of positive class (somatic) predictions. We
also track other metrics such as the f1 score, MCC, and
classification report and plot the confusion matrix.

Finally, to check the effect on clinical use cases, we
compare the value of the calculated Biomarkers,
specifically the TMB (Tumor Mutation Burden) of the
predicted and the actual mutations.

For our first iteration we performed a binary classification
using two models, LGBM and logistic regression, by
dropping the false positives from the dataset and training
only somatic vs germline using LOPOCV. The reason for
that is to compare the two models with a smaller amount of
data and compare their performances to proceed with the
best model and perform hyperparameter tuning.
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Figure 3. Architecture of the binary model
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Figure 4. Performance of the binary model. The LGBM
gave a result of 0.87 PR AUC for the somatic class and the
log reg performed with 0.72 PR AUC on the positive class.

These are the hyperparameters that was used for the further
model: LGBMClassifier(learning_rate=0.1, max_depth=9,
random_state=80, objective="multiclass’, num_class=3,
bagging seed=13, bagging fraction=0.8, feature_fraction=0.8,
bagging_freq=5, reg_alpha=0.1, reg_lambda=0.1)

After getting the optimal hyperparameters for the model we
performed a multiclass classification on the whole data.
This gave a result of 0.74.
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Figure 5. Performance of the multiclass classification

After some exploration and analysis, we came up with a
better performing model that improved the PR AUC with an
absolute value of 5%.

The architecture includes a two-step classification model.
The first step of the LGBM model performs a binary
classification by first identifying the FP vs (somatic and
germline) which we will call TP. And after getting the TP
with a very high accuracy we filter out the FP from the
original dataset and run a multiclass LGBM model.
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Figure 6. The performance of the binary model in Step 1.
We observe a high precision and recall for predicting the
false positives from the true positives using the LGBM
model with the same hyperparameters.
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Figure 7: Two-step multiclass model evaluation. Step 2.

After this model we have tried stacking model for every
diagnosis type on top of this base model hoping to improve
the performance, but it didn’t have any improvement. So,
we did a deep dive to see how it is performing for each
category.
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Figure 8: Performance on different binarized purity groups.
So purity has values from 0 tol. So, group O are the
mutations with purity [0, 0.1]. Group 1 are the mutations
with purity from (0.1, 0.2] and so on until group 9 (0.9,1].
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Figure 9: Performance of each patient. Each datapoint is the
metric of the model for that patient. Count shows the
number of mutations each patient has.

Looking at the PR AUC distribution of patients we came up
with an idea of training the model on the good samples
which we defined as the patients that have a PR AUC score
higher than 0.65. We trained on the good samples but
predicted on the whole samples using LODOCYV. This
improved our PR AUC results even further with an absolute
value of 3%.

MultiClass

MCC=0.39
samples=17902057
Weighted F1 score=0.93

8.90 2.7 88.39%

& (82966) : (823617) _ 80
= 60
2y
@3 72.19% 22.52%
o E (143357) (44728)
]
= 40
5
= 0.24% 0.1 99.64% 20
E (39952) (20667) (16711044)
&
1
FP Somatic Germline
Predicted Label
LightGBM - Precision-Recall- SOMATIC
1.0
1.0 4
Ty
04 \ 0.8
c 0.6 \ 0.6 ©
o o
@ \ =
(%] [
v =
& 0.4 04F
J \I
0.2 |l 0.2
ool © LgntGBM (AUC =0.82)
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 10: Two Step Multiclass Classification LODOCV
(good samples PR AUC>= 0.65)



very high R2 score that indicates a very good performing

model that can be used for clinical purposes.

After getting a satisfactory result we also calculated the

Tumor mutation Burden (TMB) using both predicted
somatics and the actual labels. TMB is defined as the

number of somatic mutations per megabase, and it is an

important biomarker for cancer treatment.

Conclusion and References

II1.

The development of this supervised learning approach for
tumor-only mutation has shown an increased performance

Scatter Plot of TN_TMB vs. TO_TMB

compared to previous models. Using the LightGBM model,
this study has achieved notable success in identifying
somatic and germline variants within tumor genome data,

eliminating the need for traditional paired samples. The
two-step multiclass classification model demonstrated

robustness across different cancer types and in the

calculation of Tumor Mutation Burden (TMB), a key
biomarker for precision oncology. The use of multiple

cross-validation strategies, like Leave-One-Patient-Out

Cross-Validation (LOPOCYV), ensured rigorous testing and

minimized bias. Ultimately, the paper shows that with this
approach, significant progress can be made in clinical

settings, potentially leading to faster, more accurate
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mutation profiling that underpins personalized treatment

strategies. Future research may focus on improving the

exploring

additional metrics, and calculating other biomarkers to

model by trying deep learning methods,
increase the validity in precision oncology.

Figure 11: TMB values of each patient are calculated using

the predicted values and the original values and the

relationship is shown here. As is visible we have achieved a
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Figure 12: This graph shows the PRAUC values per diagnosis which proves that the model is quite robust on every cancer
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