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Abstract – Identifying somatic mutations in tumor genomes is 

crucial for cancer diagnosis, treatment, and research. 

Traditional mutation-calling approaches typically require 

paired samples of tumor and normal tissues to differentiate 

between the somatic and germline variants. This paper 

presents a novel supervised learning approach for mutation 

calling that relies solely on tumor genome data, eliminating the 

need for normal sample sequencing which reduces cost and 

saves time. Here we use LightGBM model to perform the task 

of classifying the mutation types in tumor samples using a 

combination of genomic features. Our method involves 

extensive training using a dataset of known mutations from 

cancer patients, which allows the model to learn the 

distinguishing characteristics of somatic and germline 

variants. In This paper you will see how different approaches 

and designs have improved the performance. We also illustrate 

the robustness of our approach across various cancer types and 

calculating tumor-mutational burden (TMB). This innovation 

not only reduces the sample requirements and cost of genomic 

analysis but also has significant implications for precision 

oncology, where rapid and accurate mutation profiling is 

critical for personalized treatment strategies.  

    Index Terms—Tumor-Only Mutation calling, Tumor 

mutation burden, Light Gradient Boosting Machine, 

Classification, Somatic, Germline. 

 

I. INTRODUCTION 

 

Variant/Mutation calling is the process of identifying 

mutations in the DNA sequence. In our case, we consider 

single nucleotide polymorphisms (SNPs) which include 

insertions, deletions, and substitutions. Variant calling is 

essential in cancer genomics, where it is used to identify 

mutations driving cancer development. This information is 

crucial for understanding cancer pathways, developing 

targeted therapies, and personalizing cancer treatment by 

improving drug efficacy and reducing side effects. Humans 

share more than 99% of their genome sequence indicating a 

high degree of genetic similarity among individuals. 

However, each individual has an estimated 3 to 4 million 

single nucleotide variants (SNVs) that contribute to genetic 

diversity. This difference arises from two main sources. It 

could be inherited from our parents through the germ cells, 

and is the reason why one person is different from one 

another. This type of difference is called germline variants. 

Secondly, it could arise within the cell and tissues 

throughout individual’s lifetime due to environmental 

factors or other cellular processes, which we don’t transmit 

to the next generation, and is called Somatic variants. These 

somatic mutations lead to the development of tumors and 

identifying them makes it a useful target for personalized 

cancer therapies. 

The traditional approach for finding these somatic 

mutations include extracting the DNA of Normal (non-

cancerous source) and Tumor cells of the patient and 

sequencing it. We then run a mutation caller (Strelka, 

Mutect, GATK etc.) which detect the differences of the 

nucleotides between the normal and the tumor genome. 

These differences are considered the somatic mutations. 

Moreover, to identify the germline variants the mutation 

caller compares the tumor and a universal human reference 

genome and gets the differences. from that it filters out the 

somatic variants that we found earlier, and we will be left 

with the germline mutations. The mutation caller also 

identifies false positives which are the nucleotides that are 

not mutations, but it has identified as one.  

 Figure 1. Paired tumor-normal mutation calling 

 

II. RESULTS AND DISCUSSION 

 

With our approach we have created a model that could 

identify and classify the mutation as germline, somatic or 

false positive (FP). The data is in a tabular format which 

initially had 27 columns (features), 36,482,012 rows where 

each row is a single mutation, covered 2020 patients that 

had been diagnosed with 119 different cancers. The features 

are information that describe the mutation such as 

Tumor_VAF, t_depth, POPAF, purity of the sequence and 



etc. We processed the data by joining the tables of different 

features, cleaning duplicates, filtering out bad samples, 

standard-scaling and one-hot encoding the corresponding 

columns and fixing data related issues. After that phase we 

were left with 29,449,541 rows (mutations) and 92 columns 

which were ready to go into the model.   

For the training approach we used Leave-one-patient-out-

cross-validation (LOPOCV), Leave-one-group-of-patient-

out-cross-validation (LOGOPOCV) and Leave-one-

diagnosis-out-cross-validation (LODOCV). We have 

chosen these approaches so that we don’t split mutations of 

same patients in the different sets, which is more realistic to 

the problem that it will solve in real clinical case. 

  

Figure 2. There is a huge imbalance within the distribution 

of the classes. 

 

The main evaluation metric chosen for the model was 

Precision recall area under the curve score (PR AUC). This 

metric is particularly useful here as we are dealing with a 

highly imbalanced dataset. And our focus is on the 

performance of positive class (somatic) predictions. We 

also track other metrics such as the f1 score, MCC, and 

classification report and plot the confusion matrix.  

Finally, to check the effect on clinical use cases, we 

compare the value of the calculated Biomarkers, 

specifically the TMB (Tumor Mutation Burden) of the 

predicted and the actual mutations. 

 

For our first iteration we performed a binary classification 

using two models, LGBM and logistic regression, by 

dropping the false positives from the dataset and training 

only somatic vs germline using LOPOCV. The reason for 

that is to compare the two models with a smaller amount of 

data and compare their performances to proceed with the 

best model and perform hyperparameter tuning. 

   

 

 

 

 

Figure 3. Architecture of the binary model 

 

Figure 4. Performance of the binary model. The LGBM 

gave a result of 0.87 PR AUC for the somatic class and the 

log reg performed with 0.72 PR AUC on the positive class. 

 

These are the hyperparameters that was used for the further 

model: LGBMClassifier(learning_rate=0.1, max_depth=9, 

random_state=80, objective='multiclass', num_class=3, 

bagging_seed=13, bagging_fraction=0.8, feature_fraction=0.8, 

bagging_freq=5, reg_alpha=0.1, reg_lambda=0.1) 

After getting the optimal hyperparameters for the model we 

performed a multiclass classification on the whole data. 

This gave a result of 0.74. 

Figure 5. Performance of the multiclass classification 

After some exploration and analysis, we came up with a 

better performing model that improved the PR AUC with an 

absolute value of 5%. 

The architecture includes a two-step classification model. 

The first step of the LGBM model performs a binary 

classification by first identifying the FP vs (somatic and 

germline) which we will call TP. And after getting the TP 

with a very high accuracy we filter out the FP from the 

original dataset and run a multiclass LGBM model.  



 

Figure 6. The performance of the binary model in Step 1. 

We observe a high precision and recall for predicting the 

false positives from the true positives using the LGBM 

model with the same hyperparameters.  

 

 

 

 

 

 

Figure 7: Two-step multiclass model evaluation. Step 2. 

After this model we have tried stacking model for every 

diagnosis type on top of this base model hoping to improve 

the performance, but it didn’t have any improvement. So, 

we did a deep dive to see how it is performing for each 

category.   

 

Figure 8: Performance on different binarized purity groups. 

So purity has values from 0 to1. So, group 0 are the 

mutations with purity [0, 0.1]. Group 1 are the mutations 

with purity from (0.1, 0.2] and so on until group 9 (0.9,1]. 

 

Figure 9: Performance of each patient. Each datapoint is the 

metric of the model for that patient. Count shows the 

number of mutations each patient has. 

Looking at the PR AUC distribution of patients we came up 

with an idea of training the model on the good samples 

which we defined as the patients that have a PR AUC score 

higher than 0.65. We trained on the good samples but 

predicted on the whole samples using LODOCV. This 

improved our PR AUC results even further with an absolute 

value of 3%. 

Figure 10: Two Step Multiclass Classification LODOCV 

(good samples PR AUC>= 0.65) 



After getting a satisfactory result we also calculated the 

Tumor mutation Burden (TMB) using both predicted 

somatics and the actual labels. TMB is defined as the 

number of somatic mutations per megabase, and it is an 

important biomarker for cancer treatment. 

 

Figure 11: TMB values of each patient are calculated using 

the predicted values and the original values and the 

relationship is shown here. As is visible we have achieved a 

very high R2 score that indicates a very good performing 

model that can be used for clinical purposes.   

III. Conclusion and References 

The development of this supervised learning approach for 

tumor-only mutation has shown an increased performance 

compared to previous models. Using the LightGBM model, 

this study has achieved notable success in identifying 

somatic and germline variants within tumor genome data, 

eliminating the need for traditional paired samples. The 

two-step multiclass classification model demonstrated 

robustness across different cancer types and in the 

calculation of Tumor Mutation Burden (TMB), a key 

biomarker for precision oncology. The use of multiple 

cross-validation strategies, like Leave-One-Patient-Out 

Cross-Validation (LOPOCV), ensured rigorous testing and 

minimized bias. Ultimately, the paper shows that with this 

approach, significant progress can be made in clinical 

settings, potentially leading to faster, more accurate 

mutation profiling that underpins personalized treatment 

strategies. Future research may focus on improving the 

model by trying deep learning methods, exploring 

additional metrics, and calculating other biomarkers to 

increase the validity in precision oncology.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: This graph shows the PRAUC values per diagnosis which proves that the model is quite robust on every cancer 

type. 
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